# MAINTENANCE MANUAL <br> 138-174 MHz OSCILLATOR/MULTIPLIER BOARD <br> 19D423241G1-G4 

## TABLE OF CONTENTS

DESCRIPTION
Front Cover
CIRCUIT ANALYSIS
OUTLINE DIAGRAM
SCHEMATIC DIAGRAM
PARTS LIST AND PRODUCTION CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

## DESCRIPTION

The MASTR ${ }^{\circledR}$ II oscillator-multiplier can be equipped with up to eight Integrated Circuit Oscillator Modules ICOMs). The ICOM crystal frequencies range from approximately 14 to 18 megahertz, \& the crystal frequency is multiplied nine times and then amplified to provide a low ide injection frequency to the mixer. An optional modificaion kit is available for high side injection.

In receivers equipped with a Dual Front End (DFE), a second OSC/mult board is used. A total of eight ICOMs can be used between the two OSC/mult boards.

## CIRCUIT ANALYSIS

## ICOM's

Three different types of ICOM's are available for use in he Osc/Mult module. Each contains a crystal-controlled Colpitts oscillator, and two of the ICOM's contain compensator IC's. The different ICOM's are:
-5C-ICOM - contains an oscillator and a 5 $\underset{\text { part-per-million } \quad( \pm 0.0005 \%)}{\text { compensator }}$ IC.

- EC-ICOM - contains an oscillator only. Requires external compensation from a 5 C -ICOM.
- $2 \mathrm{C}-\mathrm{ICOM}$ - contains an oscillator and a 2 PPM $( \pm 0.0002 \%)$ compensator IC. Will not provide ompensation for an EC-ICOM.

The ICOMs are enclosed in an RF shielded can with the type ICOM (5C-ICOM, EC-ICOM or 2C-ICOM) printed on the top of the can. Access to the oscillator trimmer is ob tained through a hole on top of the can.

Frequency selection is accomplished by switching the ICOM keying lead (terminal 6) to A- by using the frequency selector switch on the control unit. In single frequency radios, a jumper from H 9 to H 10 in the control unit connects terminal 6 of the ICOM to A-
In DFE applications, keying leads of the receiver and th DFE osc/mult ICOM's are operated in parallel. Therefore ICOM's in the receiver can not be placed in the same pos tion as those in the DFE.

In the receive mode, +10 Volts is applied to the external ICOM load resistor (R401) by the Rx Osc control line, keep ing the selected ICOM turned on. Keying the transmitter removes the 10 Volts at R401, turning the ICOM off.

[^0]
## ERICSSON 三 9

Ericsson GE Mobile Communications Inc.

In standard 5 PPM radios using EC-ICOMs, at least one 5 C -ICOM must be used. The 5C-ICOM is normally used in the receiver F1 position, but can be used in any transmit or receive position. One 5C-ICOM can provide compensation for up to 15 EC-ICOMs in the transmitter and receiver. Should the 5C COM compensator fail in the open mode, the EC-ICOMs will still maintain 2 PPM frequency stability from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ +5 Volts) from the 10 -Volt regulator IC. If desired up to 16 S-ICOMs may be used in the radio

The 2C-ICOMs are self-compensated to 2 PPM and can not provide compensation for EC-ICOMs

When a DFE is used with a wide spaced transmitter option, ompensation voltage for the 5 C -ICOMs is supplied from the 10 Volt regulator IC provided with the wide spaced transmit er option.

## Oscillator Circuit

The quartz crystals used in ICOMs exhibit the traditional S" curve characteristics of output frequency versus operating temperature.

At both the coldest and the hottest temperatures, the fre quency increases with increasing temperature. In the middle emperature range (approximately $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ), frequency decreases with increasing temperature. In the middle tempera re range (approximately $0^{\circ} \mathrm{C}$ to $+5 \mathrm{~S}^{\circ} \mathrm{C}$ ), frequency decrease with increasing temperature.

Since the rate of change is nearly linear over the mid-tem perature range the output frequency change can be compenperature range the output frequency change can be compen-
sated by choosing a parallel compensation capacitor with emperature coefficient approximately equal and opposite that of the crystal.

Figure 1 shows the typical performance of an uncompen sated crystal as well as the typical performance of a crystal which has been matched with a properly chosen compensation apacitor.
At temperatures above and below the midrange, additional compensation must be introduced. An externally generate compensation voltage is applied to a varactor (voltage-variable apacitor) which is parallel with the crystal.

A constant bias of 5 Volts (provided from Regulator IC 4901 in parallel with the compensator) establishes the varactor apacity at a constant value over the entire mid-temperatur


Figure 1 - Typical Crystal Characteristics
will provide 2 PPM frequency stability from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ $\left(+30^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$

## Compensator Circuits

Both the 5 C -ICOMs and 2 C -ICOMs are temperature compensated at both ends of the temperature range to provide instant frequency compensation. An equivalent ICOM circuit is shown in Figure 2.
The cold end compensation circuit does not operate at temperatures above $0^{\circ} \mathrm{C}$. When the temperature drops below $0^{\circ} \mathrm{C}$, the circuit is activated. As the temperature decreases, the equivalent resistance decreases and the compensation voltage increases.

The increase in compensation voltage decreases the capacity of the varactor in the oscillator, increasing the output frequency of the ICOM

The hot end compensation circuit does not operate at temperatures below $+55^{\circ} \mathrm{C}$. When the temperature rises above $+55^{\circ} \mathrm{C}$, the circuit is activated. As the temperature increases the equivalent resistance decreases and the compensation voltage decreases. The decrease in compensation voltage increases the ICOM
.
Service Note: Proper ICOM operation is dependent on the closely-controlled input voltages from the 10 -Volt regulator Should all of the ICOMs shift off frequency, check the 10 -Volt regulator module


Figure 2 - Equivalent ICOM Circuit

## MULTIPLIER \& AMPLIFIER

The output of the selected ICOM is coupled through a tuned circuit (L401 and C406) that is tuned to three times the crystal frequency. The output of the tuned circuit is ap plied to the base of Class C multiplier, Q401. The collecto tank circuit of the multiplier (L402, C411 and C412) is tuned to nine times the crystal frequency. The output of the multiplier stage is metered across R402 and applied to receive metering jack J601 through P903-14

Following the multiplier is a Class A Amplifier stage, Q402. The output of Q402 is metered through a metering
network consisting of C419, C420, CR402 and R407 and applied to receiver metering jack J601 through P903-15. The amplified output of Q402 is applied to a tuned circuit (L403 and C416) that is tuned to nine times the crystal frequency The tuned circuit provides some selectivity in the oscillatormultiplier chain.

The output of the oscillator/multiplier board is inductively coupled through L405 and two helical resonators on the RF assembly to the input of the mixer stage.

COMPONENT SIDE

$\left(\begin{array}{c}(19 C 327003, \text { Rev. } 5) \\ (198227823, \text { h. } 1, \text { Rev. } 5)\end{array}\right.$
LATER MODELS

## COMPONENT SIDE

$\left.\begin{array}{c}(19 C 423587, \text { Rev. } 1) \\ \text { (198227823, Sh. } 2, \text { Rev. } 1)\end{array}\right)$
EARLIER MODELS


## OUTLINE DIAGRAM

138-174 MHz OSCILLATOR/MULTIPLIER 19D423241G1-G4


PARTIAL REFERENCE DESIGNATIONS ARE SHOWN, FOR COMPLETE DESIGNATION, PREFIX WITH 400 SERIES.
EXAMPLE C1-C401, R1 - R401, ETC


| $\triangle$ THESE COMPONENTS ARE USED TO AOAPT A STANDARD MASTR II <br>  <br>  |  |
| :---: | :---: |
| RECE VER CHANNEL | a. .e. Channel |
|  | NO MODIFICATION REQUIRED ON THE MIXER/IF BOARD |
| these items are sypulied in | ON PLI90423244 ( 0 SC/MULT 801 |
|  | I. N24-W-8L JUMPER ADDED BETWEEN ha ho mult ao. <br>  MOD. KIT PLI9A12975062. |
|  |  |



VOLTAGE READINGS

An inoicates a-
$\underset{\sim}{\perp}$ INDICATES venicle grouno

* CaIT USED in groups Ia 3 onle

(190423488, Rev. 11

|  |  |  | ŠM ${ }^{\text {a }}$ | GE Part no. | description |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 19 A 00000 PB 19 A 129280 P 1 19 B 209420 P 114 | Coil, HF : $150 \mathrm{nH} \pm 20 \mathrm{~F}$; sim to Jeffera 4411-1. Coil. $\qquad$ <br> il, RF: 1,2 uH $\pm 109,-18$ ohms $D C$ res max; slm Jetfers $4436-1 K$. Added by EEV B . |
| SyMBoL | GE Part No. | description | ${ }_{\text {s00 }}$ |  | Comosotor. Lnatisase: |
| cat | ${ }^{19 \times 201602019}$ | Ceramic: $1000 \mathrm{pF} \pm 20 \mathrm{~g}, 1000$ vDCW ; sim to RMC |  | 198219504P1. 198219594 Pa | Contact, electrical: 7 pins Contact, electrical: 8 pins |
| $\underbrace{\text { cos }}_{\substack{\text { cosaz } \\ \text { tiru }}}$ | reatacraick | Palyester: . 110 up tiox, se voce | asal | 19.15 | sill con, wex. |
|  | 59698\%771 | Tenta imi 2.2 ut | ¢, ${ }^{\text {ara* }}$ | 181.188989 | Sill on, weny |
| ${ }^{\text {c106 }}$ | 1997001282 |  |  | 12011 [83929 |  |
| caorr | 198708629812 |  |  |  |  |
| ${ }^{\text {c4072 }}$. | ${ }_{19870184891}$ |  |  |  |  |
|  |  | In Eev B cartier: | ${ }^{\text {sen }}$ |  |  |
|  | ${ }^{129116585098188}$ |  | $\underbrace{\text { a }}_{\substack{\text { gatat } \\ \text { Res }}}$ |  | Comostior: |
| ${ }^{\text {c408 }}$ | ${ }^{198980894815}$ |  | naseo | ${ }_{1} 18$ 12700 |  |
| citas | ${ }^{198706162719}$ |  | $\begin{aligned} & \mathrm{R} 407 \\ & \mathrm{R408} \end{aligned}$ |  |  |
| ${ }_{\text {can }}$ | ${ }^{20 a r c o o z a n}$ a |  | ${ }_{\text {neso }}$ |  | 为 |
| cataL | ${ }^{19807162456}$ |  |  |  | -.... - - socerers - . . . . |
| ${ }^{\text {cu2an }}$ | 188го18443 | cemet | $\underbrace{}_{\substack { \text { zrat } \\ \begin{subarray}{c}{\text { zrat } \\ \text { x+4, }{ \text { zrat } \\ \begin{subarray} { c } { \text { zrat } \\ \text { x+4, } } }\end{subarray}}$ | 188727 | contact, |
| 641 | ${ }_{19870182493}$ |  |  |  |  |
|  | 198701 |  |  | \%erisent | vith cues |
| ${ }^{\text {c418 }}$ | 19aroonlera |  |  |  | mich sios |
| calu | 10970, 8 asp |  |  |  |  |
| c418 | 19870188483 |  | ${ }^{\text {casan }}$ |  | Cormit |
| ${ }^{\text {ci419 }}$ |  |  | ${ }_{\text {cosem }}^{\text {cesas }}$ |  |  |
|  |  |  | cise |  |  |
| ${ }_{6} \mathbf{2 3 2 1 5}$ | 19870128248214 | Cerame |  | S90150 |  |
| ${ }^{\text {cas2* }}$ |  |  | cos | \%-10 |  |
|  |  |  | ${ }_{\text {casil }}$ |  |  |
|  | Eorlit |  | ${ }^{\text {ca312 }}$ | ${ }^{1291}$ |  |
| ${ }^{133}$ | тиастs |  | ${ }^{2313}$ |  |  |
| ${ }^{\text {cis } 24}$ | 198070164410 |  | ${ }^{20314}$ | ${ }^{2012} 16$ gesprase |  |
|  |  |  | ${ }^{\text {casi }}$ | 10 \% |  |
| cran 2 | ${ }_{1841168925}$ | arrier: Fud. .so volts max. | c2394 | 129780065 |  |
|  |  | (Tart of printee coard manasarssepr). | ${ }^{1298}$ |  | Coil, pr: 330 nf El tor. |

## PRODUCTION CHAMGES



nev. B - To doercaase possibility of radiation form Mult-1 neter leas












[^0]:    All ICOMs are individually compensated at the factory
    All ICOMs are individually compensated at the factory
    and cannot be repaired in the field. Any attempt to reand cannot be repaired in the field. Any attempt to re-
    pair or change an ICOM frequency will void the warranty.

