
MOBILE DATA

EDACS CommServ
Programmers Guide

CONFIDENTIAL

MS-DOS/ Terminal Interface
for

EDACS
Radio Networks

by

LBI-38835A

MOBILE DATA

EDACS CommServ
Programmers Guide

CONFIDENTIAL

MS-DOS/ Terminal Interface
for

EDACS
Radio Networks

by

LBI-38835A

This publication and the described software are supplied "as is" without
warranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability or fitness for a
particular purpose.

This publication may change, and the software described is also
improved or changed, without prior notice given.

Neither the documentation nor the software described may be copied,
photocopied, reproduced, translated, or reduced to any electronic
medium or machine-readable form, except in the manner described in
the document.

TRADEMARKS

MS-DOS is a trademark of Microsoft Corporation.
CommServ is a trademark of Ericsson/General Electric Co.
IBM is a trademark of International Business Machines Corporation.
All other company, brand, or product names used are trademarks or
registered trademarks of their respective companies.

Portions of this document are based on the IBM document, RF
Communications Manager Program Development Guide. This
document is Copyrighted by IBM Corporation, 1991. These materials
are used and reproduced under license.

This publication and the described software are supplied "as is" without
warranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability or fitness for a
particular purpose.

This publication may change, and the software described is also
improved or changed, without prior notice given.

Neither the documentation nor the software described may be copied,
photocopied, reproduced, translated, or reduced to any electronic
medium or machine-readable form, except in the manner described in
the document.

TRADEMARKS

MS-DOS is a trademark of Microsoft Corporation.
CommServ is a trademark of Ericsson/General Electric Co.
IBM is a trademark of International Business Machines Corporation.
All other company, brand, or product names used are trademarks or
registered trademarks of their respective companies.

Portions of this document are based on the IBM document, RF
Communications Manager Program Development Guide. This
document is Copyrighted by IBM Corporation, 1991. These materials
are used and reproduced under license.

PREFACE

The EGE Mobile Data Application Programming Interface
(MDAPI) is intended for application programmers developing soft-
ware products that use the RF data features of the Enhanced Digital
Access Communications System (EDACS) trunked radio system.
Users of this document should be familiar with computer program-
ming and program design concepts.

Hardware and Software Requirements

A software development system requires the following hardware
and system software to utilize the tools described in this document:

• An IBM compatible personal computer
• A 720 KB or 1.44 MB 3.5 inch diskette drive
• A hard disk drive
• One or two serial ports (COM1 and/or COM2)
• MS-DOS or PC-DOS 3.0 or higher version
• An ANSI C compiler

Document Organization

This document is divided into ten parts as follows:
• Preface
• Table of Contents
• Chapter 1: Introduction
• Chapter 2: Communications Server (CommServ)
• Chapter 3: Mobile Data Application Library (MDALib)
• Appendix A: Return Levels and Return Codes
• Appendix B: MDALib to CommServ Call Relationships
• Appendix C: Coding Examples
• Appendix D: Return Code to MDALib Relationships
• Index

Chapter 1 provides a general description of MDAPI and its two
components, CommServ and MDALib.

i

LBI-38835

PREFACE

The EGE Mobile Data Application Programming Interface
(MDAPI) is intended for application programmers developing soft-
ware products that use the RF data features of the Enhanced Digital
Access Communications System (EDACS) trunked radio system.
Users of this document should be familiar with computer program-
ming and program design concepts.

Hardware and Software Requirements

A software development system requires the following hardware
and system software to utilize the tools described in this document:

• An IBM compatible personal computer
• A 720 KB or 1.44 MB 3.5 inch diskette drive
• A hard disk drive
• One or two serial ports (COM1 and/or COM2)
• MS-DOS or PC-DOS 3.0 or higher version
• An ANSI C compiler

Document Organization

This document is divided into ten parts as follows:
• Preface
• Table of Contents
• Chapter 1: Introduction
• Chapter 2: Communications Server (CommServ)
• Chapter 3: Mobile Data Application Library (MDALib)
• Appendix A: Return Levels and Return Codes
• Appendix B: MDALib to CommServ Call Relationships
• Appendix C: Coding Examples
• Appendix D: Return Code to MDALib Relationships
• Index

Chapter 1 provides a general description of MDAPI and its two
components, CommServ and MDALib.

i

LBI-38835

Chapter 2 covers the functional operation of CommServ, including
program loading and the low level application interface. The six
commands used by an application to control the operation of
CommServ are described.

Chapter 3 provides an overview of MDALib, and a detailed descrip-
tion of each function included in the Library. The reader should be
familiar with the information presented in Chapter 2 before using
this chapter.

Appendix A contains the complete list of return levels and return
codes, with explanations, comments and suggested actions for han-
dling errors.

Appendix B contains tables showing the relationship between
MDALib function calls and the underlying CommServ commands.

Appendix C contains coding examples using MDALib function
calls.

Appendix D has a table showing MDALib functions associated
with specific return codes.

Glossary of Terms

API

Application Programming Interface - A specification (usually
for a specific programming language) of the interface between
an application program and a system control program.

CommServ

Communications Server - a low level serial communications pro-
gram supporting RF data transmission on an EDACS radio sys-
tem.

DCB

Device Control Block - A data structure containing information
used to control a hardware device.

ii

LBI-38835

Chapter 2 covers the functional operation of CommServ, including
program loading and the low level application interface. The six
commands used by an application to control the operation of
CommServ are described.

Chapter 3 provides an overview of MDALib, and a detailed descrip-
tion of each function included in the Library. The reader should be
familiar with the information presented in Chapter 2 before using
this chapter.

Appendix A contains the complete list of return levels and return
codes, with explanations, comments and suggested actions for han-
dling errors.

Appendix B contains tables showing the relationship between
MDALib function calls and the underlying CommServ commands.

Appendix C contains coding examples using MDALib function
calls.

Appendix D has a table showing MDALib functions associated
with specific return codes.

Glossary of Terms

API

Application Programming Interface - A specification (usually
for a specific programming language) of the interface between
an application program and a system control program.

CommServ

Communications Server - a low level serial communications pro-
gram supporting RF data transmission on an EDACS radio sys-
tem.

DCB

Device Control Block - A data structure containing information
used to control a hardware device.

ii

LBI-38835

DCE

Data Communications Equipment - Typically a modem, in this
case the DCE is the EDACS Radio Data Interface (RDI).

DTE

Data Terminal Equipment - The computer system (Mobile Data
Terminal).

MDALib

Mobile Data Application Function Library - A library of soft-
ware functions callable from C language programs. These func-
tions comprise the application programming interface to
CommServ.

MDT

Mobile Data Terminal - A portable computer capable of trans-
mitting data messages via an RF (radio) communications link.

RDI

Radio Data Interface - The EGE proprietary hardware and asso-
ciated message protocol that allows the connection of an RS-
232 port to an EDACS data radio. The RDI may be a separate
component, or may be integrated into the radio itself.

TSR

Terminate and Stay Resident - A technique for terminating a
DOS program without removing it from system memory. The
program is dormant while other programs are executed, but re-
mains in memory and may be activated at any time by a hard-
ware or software interrupt. The term "TSR" often refers to the
dormant program itself.

iii

LBI-38835

DCE

Data Communications Equipment - Typically a modem, in this
case the DCE is the EDACS Radio Data Interface (RDI).

DTE

Data Terminal Equipment - The computer system (Mobile Data
Terminal).

MDALib

Mobile Data Application Function Library - A library of soft-
ware functions callable from C language programs. These func-
tions comprise the application programming interface to
CommServ.

MDT

Mobile Data Terminal - A portable computer capable of trans-
mitting data messages via an RF (radio) communications link.

RDI

Radio Data Interface - The EGE proprietary hardware and asso-
ciated message protocol that allows the connection of an RS-
232 port to an EDACS data radio. The RDI may be a separate
component, or may be integrated into the radio itself.

TSR

Terminate and Stay Resident - A technique for terminating a
DOS program without removing it from system memory. The
program is dormant while other programs are executed, but re-
mains in memory and may be activated at any time by a hard-
ware or software interrupt. The term "TSR" often refers to the
dormant program itself.

iii

LBI-38835

UART

Universal Asynchronous Receiver Transmitter - A hardware de-
vice capable of receiving serial data, transposing it to parallel
and transmitting it. It is also capable of receiving parallel data
and transmitting it as a serial bit stream.

COMPATIBILITY

Because of the compatibility at the application interface level, it
is possible to easily port Mobile Data application programs de-
veloped for the IBM RF Communications Manager to operate
on an EDACS system. EGE wishes to acknowledge the contri-
bution of IBM in the conception of this product and their coop-
eration in its development.

iv

LBI-38835

UART

Universal Asynchronous Receiver Transmitter - A hardware de-
vice capable of receiving serial data, transposing it to parallel
and transmitting it. It is also capable of receiving parallel data
and transmitting it as a serial bit stream.

COMPATIBILITY

Because of the compatibility at the application interface level, it
is possible to easily port Mobile Data application programs de-
veloped for the IBM RF Communications Manager to operate
on an EDACS system. EGE wishes to acknowledge the contri-
bution of IBM in the conception of this product and their coop-
eration in its development.

iv

LBI-38835

TABLE OF CONTENTS

Chapter/Paragraph Page

PREFACE . i

Hardware and Software Requirements i
Document Organization i
Glossary of Terms . ii
Table of Contents . v

CHAPTER 1 - INTRODUCTION 1-1

1.0 Introduction 1-1
1.1 Communications Server (CommServ) 1-1
1.2 Mobile Data Application Functions Library

 (MDALib) 1-2
1.6 Storage Considerations. 1-3
1.7 Performance Considerations 1-4
1.8 Restrictions 1-4

CHAPTER 2 - Communication Server Program (CommServ) 2-1

2.1 CommServ Loading and Initial Setup 2-1

CHAPTER 3 - MDAPI Communications Library (MDALib) 3-1

3.1 Features. . 3-1
3.1.1 MDALib Overview 3-1
3.1.2 Miscellaneous CommServ Support Calls . . . 3-2
3.1.3 CommServ Port Parameter Calls 3-3
3.1.4 CommServ Communication Calls 3-3
3.1.5 CommServ Trace Calls 3-6
3.1.6 CommServ Status and Statistics Calls 3-7
3.2 MDALib Call Format 3-8
3.3 MDALib Calls 3-9

cs_alloc_trace_buffers() 3-9
cs_cancel_write_msg_no_wait() 3-10
cs_close() . 3-11
cs_disable_user_abort() 3-12
cs_enable_user_abort() 3-12
cs_free_trace_buffers() 3-13
cs_get_api_version_date() 3-14
cs_get_api_version_number() 3-14

v

LBI-38835

TABLE OF CONTENTS

Chapter/Paragraph Page

PREFACE . i

Hardware and Software Requirements i
Document Organization i
Glossary of Terms . ii
Table of Contents . v

CHAPTER 1 - INTRODUCTION 1-1

1.0 Introduction 1-1
1.1 Communications Server (CommServ) 1-1
1.2 Mobile Data Application Functions Library

 (MDALib) 1-2
1.6 Storage Considerations. 1-3
1.7 Performance Considerations 1-4
1.8 Restrictions 1-4

CHAPTER 2 - Communication Server Program (CommServ) 2-1

2.1 CommServ Loading and Initial Setup 2-1

CHAPTER 3 - MDAPI Communications Library (MDALib) 3-1

3.1 Features. . 3-1
3.1.1 MDALib Overview 3-1
3.1.2 Miscellaneous CommServ Support Calls . . . 3-2
3.1.3 CommServ Port Parameter Calls 3-3
3.1.4 CommServ Communication Calls 3-3
3.1.5 CommServ Trace Calls 3-6
3.1.6 CommServ Status and Statistics Calls 3-7
3.2 MDALib Call Format 3-8
3.3 MDALib Calls 3-9

cs_alloc_trace_buffers() 3-9
cs_cancel_write_msg_no_wait() 3-10
cs_close() . 3-11
cs_disable_user_abort() 3-12
cs_enable_user_abort() 3-12
cs_free_trace_buffers() 3-13
cs_get_api_version_date() 3-14
cs_get_api_version_number() 3-14

v

LBI-38835

TABLE OF CONTENTS

Chapter/Paragraph Page
cs_get_cs_version_date() 3-15
cs_get_cs_version_number() 3-16
cs_get_line_status() . 3-16
cs_get_modem_status() 3-17
cs_get_options() . 3-18
cs_get_rx_buffer_count() 3-19
cs_get_rx_count() . 3-20
cs_get_rx_errors() . 3-20
cs_get_rx_msg_count() 3-21
cs_get_state() . 3-22
cs_get_tx_buffer_count() 3-23
cs_get_tx_count() . 3-23
cs_get_tx_errors() . 3-24
cs_get_tx_retries() . 3-25
cs_get_vector_number() 3-25
cs_init() . 3-26
cs_init_data_groups() 3-27
cs_init_trace() . 3-28
cs_interrupt() . 3-29
cs_is_installed() . 3-29
cs_open_rf() . 3-30
cs_read_addr_msg() . 3-30
cs_read_msg() . 3-32
cs_remove() . 3-33
cs_reset_msg_stats() . 3-33
cs_reset_status() . 3-34
cs_rx_trace_read() . 3-35
cs_set_defaults() . 3-36
cs_set_destination_id() 3-36
cs_set_open_timeout() 3-38
cs_set_rx_buffer_size() 3-39
cs_set_tx_buffer_size() 3-40
cs_set_write_timeout() 3-41
cs_start_trace() . 3-42
cs_stop_trace() . 3-43
cs_tx_trace_read() . 3-43
cs_write_addr_msg_ignore_ack() 3-44
cs_write_addr_msg_no_wait() 3-46

vi

LBI-38835

TABLE OF CONTENTS

Chapter/Paragraph Page
cs_get_cs_version_date() 3-15
cs_get_cs_version_number() 3-16
cs_get_line_status() . 3-16
cs_get_modem_status() 3-17
cs_get_options() . 3-18
cs_get_rx_buffer_count() 3-19
cs_get_rx_count() . 3-20
cs_get_rx_errors() . 3-20
cs_get_rx_msg_count() 3-21
cs_get_state() . 3-22
cs_get_tx_buffer_count() 3-23
cs_get_tx_count() . 3-23
cs_get_tx_errors() . 3-24
cs_get_tx_retries() . 3-25
cs_get_vector_number() 3-25
cs_init() . 3-26
cs_init_data_groups() 3-27
cs_init_trace() . 3-28
cs_interrupt() . 3-29
cs_is_installed() . 3-29
cs_open_rf() . 3-30
cs_read_addr_msg() . 3-30
cs_read_msg() . 3-32
cs_remove() . 3-33
cs_reset_msg_stats() . 3-33
cs_reset_status() . 3-34
cs_rx_trace_read() . 3-35
cs_set_defaults() . 3-36
cs_set_destination_id() 3-36
cs_set_open_timeout() 3-38
cs_set_rx_buffer_size() 3-39
cs_set_tx_buffer_size() 3-40
cs_set_write_timeout() 3-41
cs_start_trace() . 3-42
cs_stop_trace() . 3-43
cs_tx_trace_read() . 3-43
cs_write_addr_msg_ignore_ack() 3-44
cs_write_addr_msg_no_wait() 3-46

vi

LBI-38835

TABLE OF CONTENTS

Chapter/Paragraph Page
cs_write_addr_msg_wait_ack() 3-48
cs_write_msg_ack_status() 3-49
cs_write_msg_ignore_ack() 3-50
cs_write_msg_no_wait() 3-51
cs_write_msg_wait_ack() 3-52

Appendix A - Return Levels and Return Codes A-1

A-1 Return Levels A-1
A-2 CommServ Return Codes A-2
A-2.1 Informational and Error Return Codes A-3
A-2.2 Informational Return Codes A-3
A-2.3 DCB Error Return Codes A-4
A-2.4 INITIALIZE Structure Error Return Codes . . A-6
A-2.5 Trace Related Error Return Codes A-10
A-2.6 CommServ Related Error Return Codes A-11
A-2.7 CommServ State Error Return Codes A-12
A-2.8 Radio Data Interface Error Return Codes . . . A-13
A-2.9 Abort Error Return Codes A-15
A-2.10 READ Error Return Code A-16
A-2.11 Library Error Return Codes A-17

Appendix B - MDALib to CommServ Relationships B-1

Appendix C - Coding Examples C-1

C-1. Introduction C-1
C-2. MDALib Calling Order C-1
C-3. Reading the Rx Buffer C-1
C-4. Using Trace and User_Abort Calls C-2

Appendix D - Return Codes and API Calls D-1

D-1. Introduction D-1

vii

LBI-38835

TABLE OF CONTENTS

Chapter/Paragraph Page
cs_write_addr_msg_wait_ack() 3-48
cs_write_msg_ack_status() 3-49
cs_write_msg_ignore_ack() 3-50
cs_write_msg_no_wait() 3-51
cs_write_msg_wait_ack() 3-52

Appendix A - Return Levels and Return Codes A-1

A-1 Return Levels A-1
A-2 CommServ Return Codes A-2
A-2.1 Informational and Error Return Codes A-3
A-2.2 Informational Return Codes A-3
A-2.3 DCB Error Return Codes A-4
A-2.4 INITIALIZE Structure Error Return Codes . . A-6
A-2.5 Trace Related Error Return Codes A-10
A-2.6 CommServ Related Error Return Codes A-11
A-2.7 CommServ State Error Return Codes A-12
A-2.8 Radio Data Interface Error Return Codes . . . A-13
A-2.9 Abort Error Return Codes A-15
A-2.10 READ Error Return Code A-16
A-2.11 Library Error Return Codes A-17

Appendix B - MDALib to CommServ Relationships B-1

Appendix C - Coding Examples C-1

C-1. Introduction C-1
C-2. MDALib Calling Order C-1
C-3. Reading the Rx Buffer C-1
C-4. Using Trace and User_Abort Calls C-2

Appendix D - Return Codes and API Calls D-1

D-1. Introduction D-1

vii

LBI-38835

This page intentionally left blank.

LBI-38835

This page intentionally left blank.

LBI-38835

CHAPTER 1

INTRODUCTION

1.0 Introduction

The MDAPI software product described in this document is de-
signed to support development of application programs utilizing RF
data communications on the EDACS radio system. All hardware
and message protocol considerations are hidden from the applica-
tion developer. MDAPI can be used for program development on
IBM PCs and compatible systems and requires the MS-DOS or PC-
DOS operating system as a development and runtime environment.
MDAPI provides "low-level" interfacing to standard serial asyn-
chronous communication port hardware. Two serial ports are sup-
ported using individual hardware interrupts.

MDAPI may be the only communications software required by an
application, or it may serve as the bottom layer of a multi-layered
communications package. MDAPI is simple, robust, and flexible
and provides extensive error reporting. All calls return a severity
level and a specific return code. MDAPI consists of two distinct
components; CommServ, the Communications Server, and
MDALib, the Mobile Data Application Functions Library. These
components are described below.

1.1 Communications Server (CommServ)

CommServ is a DOS TSR program, it is not installed as a device
driver nor DOS application program. Its function is to process com-
mands from an application program, interfacing directly with the se-
rial port hardware and handling all the details of message framing,
acknowledgement, asynchronous character reception, and other
standard repetitive tasks. The low level interface to CommServ con-
sists of a Device Control Block, a data structure set up by the appli-
cation program that controls the behavior of CommServ, and a
software interrupt, used by the application to pass control to
CommServ.

1-1

LBI-38835

CHAPTER 1

INTRODUCTION

1.0 Introduction

The MDAPI software product described in this document is de-
signed to support development of application programs utilizing RF
data communications on the EDACS radio system. All hardware
and message protocol considerations are hidden from the applica-
tion developer. MDAPI can be used for program development on
IBM PCs and compatible systems and requires the MS-DOS or PC-
DOS operating system as a development and runtime environment.
MDAPI provides "low-level" interfacing to standard serial asyn-
chronous communication port hardware. Two serial ports are sup-
ported using individual hardware interrupts.

MDAPI may be the only communications software required by an
application, or it may serve as the bottom layer of a multi-layered
communications package. MDAPI is simple, robust, and flexible
and provides extensive error reporting. All calls return a severity
level and a specific return code. MDAPI consists of two distinct
components; CommServ, the Communications Server, and
MDALib, the Mobile Data Application Functions Library. These
components are described below.

1.1 Communications Server (CommServ)

CommServ is a DOS TSR program, it is not installed as a device
driver nor DOS application program. Its function is to process com-
mands from an application program, interfacing directly with the se-
rial port hardware and handling all the details of message framing,
acknowledgement, asynchronous character reception, and other
standard repetitive tasks. The low level interface to CommServ con-
sists of a Device Control Block, a data structure set up by the appli-
cation program that controls the behavior of CommServ, and a
software interrupt, used by the application to pass control to
CommServ.

1-1

LBI-38835

The basic communication services performed by CommServ are (1)
configuring the hardware, (2) establishing a communication link,
(3) reading and/or writing messages over the link, and finally (4) re-
storing the port hardware to its initial state. In addition, CommServ
provides reports on port status and message statistics. CommServ
uses the following six commands to provide these services:

• INITIALIZE - This command is used to initialize the port hard-
ware and software and to set up an optional data tracing facility.

• OPEN - This command is used to establish a circuit (connection)
to the RDI. OPEN also provides subcommands to enable data
tracing and keyboard abort of timed operations.

• WRITE - This command is used to send data messages.

• READ - This command is used to receive data messages.

• STATUS - This command is used to get port status and message
statistics reports. It is also used to reset status (clear errors) and
reset statistics counters to zero.

• CLOSE - This command is used to close the port and restore the
original state of the port hardware. It is also used to disable data
tracing and keyboard abort.

1.2 Mobile Data Application Functions Library (MDALib)

The second component of this software is a Library of functions
that allow an application programmer to utilize the low level inter-
face to CommServ without having to directly manipulate the DCB
or issue the software interrupt. By linking with MDALib, C lan-
guage application programs can perform all communication func-
tions with simple calls to open a port, read and write message data
through the port, or obtain port status or message statistics.
MDALib contains one direct call to CommServ that takes a pointer
to a DCB as an argument. This call allows programmers to accom-
plish special CommServ functions via the low level interface.

Most of the MDALib functions are "pass-through". The library
function sets up the DCB, issues the software interrupt, and then
lets CommServ do the work. If an error occurs, CommServ gener-

1-2

LBI-38835

The basic communication services performed by CommServ are (1)
configuring the hardware, (2) establishing a communication link,
(3) reading and/or writing messages over the link, and finally (4) re-
storing the port hardware to its initial state. In addition, CommServ
provides reports on port status and message statistics. CommServ
uses the following six commands to provide these services:

• INITIALIZE - This command is used to initialize the port hard-
ware and software and to set up an optional data tracing facility.

• OPEN - This command is used to establish a circuit (connection)
to the RDI. OPEN also provides subcommands to enable data
tracing and keyboard abort of timed operations.

• WRITE - This command is used to send data messages.

• READ - This command is used to receive data messages.

• STATUS - This command is used to get port status and message
statistics reports. It is also used to reset status (clear errors) and
reset statistics counters to zero.

• CLOSE - This command is used to close the port and restore the
original state of the port hardware. It is also used to disable data
tracing and keyboard abort.

1.2 Mobile Data Application Functions Library (MDALib)

The second component of this software is a Library of functions
that allow an application programmer to utilize the low level inter-
face to CommServ without having to directly manipulate the DCB
or issue the software interrupt. By linking with MDALib, C lan-
guage application programs can perform all communication func-
tions with simple calls to open a port, read and write message data
through the port, or obtain port status or message statistics.
MDALib contains one direct call to CommServ that takes a pointer
to a DCB as an argument. This call allows programmers to accom-
plish special CommServ functions via the low level interface.

Most of the MDALib functions are "pass-through". The library
function sets up the DCB, issues the software interrupt, and then
lets CommServ do the work. If an error occurs, CommServ gener-

1-2

LBI-38835

ates the error code and returns it to the library function via the
DCB. In a few cases, a library function may do more. For exam-
ple, the trace functions in MDALib may allocate trace buffer mem-
ory in the application’s memory space before calling CommServ to
initialize and enable data tracing.

The following diagram shows the relationship between user applica-
tions, MDALib, CommServ, and the system hardware.

Figure 1. MDAPI Interconnections and Program/Functional Flow

1.6 Storage Considerations.

CommServ requires approximately 32K bytes of system storage.
The buffer pool allocation, 20K bytes default, is in addition to the
storage required for the operating code. CommServ is designed so
that it can be loaded from a batch file or from the DOS prompt.

1-3

LBI-38835

ates the error code and returns it to the library function via the
DCB. In a few cases, a library function may do more. For exam-
ple, the trace functions in MDALib may allocate trace buffer mem-
ory in the application’s memory space before calling CommServ to
initialize and enable data tracing.

The following diagram shows the relationship between user applica-
tions, MDALib, CommServ, and the system hardware.

Figure 1. MDAPI Interconnections and Program/Functional Flow

1.6 Storage Considerations.

CommServ requires approximately 32K bytes of system storage.
The buffer pool allocation, 20K bytes default, is in addition to the
storage required for the operating code. CommServ is designed so
that it can be loaded from a batch file or from the DOS prompt.

1-3

LBI-38835

1.7 Performance Considerations

Asynchronous communications is a character oriented protocol,
therefore, receiving data is the highest priority activity. When de-
signing an application program, the number of ports actively receiv-
ing, each port’s baud rate (9600 baud), and processor speed must be
considered. Applications must be designed to allow sufficient proc-
essor time to service all serial ports that are active without a loss of
characters. Particular attention must be given to the use of the sys-
tem timer interrupts. The timer interrupt has a higher priority than
the communications interrupts on an IBM PC. If the application
’hooks’ the timer interrupt, it must make sure that the interrupt rou-
tine completes its functions in less than 1 character time, (1 millisec-
ond at 9600 baud) or received characters may be lost.

1.8 Restrictions

CommServ retains exclusive control of all hardware and software
interrupt vectors after the application opens the Port until the appli-
cation closes it. Chaining of interrupts should not be performed.
CommServ only attaches itself to a communications port vector
when the specific port is initialized by the application. If an applica-
tion requires the port for another communication package, the appli-
cation must close the desired port before another program can use it.

CommServ can remain resident in storage while other programs are
running and service interrupts for data received on ports remaining
active in CommServ.

1-4

LBI-38835

1.7 Performance Considerations

Asynchronous communications is a character oriented protocol,
therefore, receiving data is the highest priority activity. When de-
signing an application program, the number of ports actively receiv-
ing, each port’s baud rate (9600 baud), and processor speed must be
considered. Applications must be designed to allow sufficient proc-
essor time to service all serial ports that are active without a loss of
characters. Particular attention must be given to the use of the sys-
tem timer interrupts. The timer interrupt has a higher priority than
the communications interrupts on an IBM PC. If the application
’hooks’ the timer interrupt, it must make sure that the interrupt rou-
tine completes its functions in less than 1 character time, (1 millisec-
ond at 9600 baud) or received characters may be lost.

1.8 Restrictions

CommServ retains exclusive control of all hardware and software
interrupt vectors after the application opens the Port until the appli-
cation closes it. Chaining of interrupts should not be performed.
CommServ only attaches itself to a communications port vector
when the specific port is initialized by the application. If an applica-
tion requires the port for another communication package, the appli-
cation must close the desired port before another program can use it.

CommServ can remain resident in storage while other programs are
running and service interrupts for data received on ports remaining
active in CommServ.

1-4

LBI-38835

CHAPTER 2

Communication Server Program (CommServe)

2.1 CommServ Loading and Initial Setup

When CommServ is loaded into memory it reads the command line
parameters identified below to allocate the buffer pool; adjust the
default parameters based on the communication ports identified by
the BIOS power-up-self-test (POST); and copy the default port pa-
rameters into the port working parameter areas. The default parame-
ters for each port are maintained in an unchangeable area of
CommServ.

CommServ may be loaded into memory via a batch file or from a
program. The command line for loading is:

COMMSERV /Vnn /Knn /Q /R /I

/Vnn - Vector Number nn = 60 - 67 (in hex)
/Knn - Buffer Pool nn = 5 - 50 (Decimal blocks of 1K

 bytes)
/Q - Quiet mode, does not display copyright notice
/R - Remove CommServ from memory
/I - Load at specified vector even though vector

 is already used.

NOTE: Command line parameters are not case sensitive!

Figure 2. CommServ Command Line Parameters

The Vector Number parameter, /Vnn, defines the user selected Soft-
ware interrupt vector. CommServ reads this parameter and installs
the user interface Software Interrupt Service Routine (ISR) at the
chosen vector address. If the command line parameter is not within
the 60(hex) - 67(hex) limits CommServ returns a DOS ERROR-
LEVEL return code of 2. The default software interrupt vector
number is 60(hex) if the /Vnn is omitted.

If the specified load vector is already in use, and the /I parameter is
not used, CommServ returns a DOS ERRORLEVEL code of 6.

If the /I parameter is used, CommServ loads itself at the specified
vector, whether that vector is in use or not. This could result in un-
predictable behavior, and is not recommended.

2-1

LBI-38835

CHAPTER 2

Communication Server Program (CommServe)

2.1 CommServ Loading and Initial Setup

When CommServ is loaded into memory it reads the command line
parameters identified below to allocate the buffer pool; adjust the
default parameters based on the communication ports identified by
the BIOS power-up-self-test (POST); and copy the default port pa-
rameters into the port working parameter areas. The default parame-
ters for each port are maintained in an unchangeable area of
CommServ.

CommServ may be loaded into memory via a batch file or from a
program. The command line for loading is:

COMMSERV /Vnn /Knn /Q /R /I

/Vnn - Vector Number nn = 60 - 67 (in hex)
/Knn - Buffer Pool nn = 5 - 50 (Decimal blocks of 1K

 bytes)
/Q - Quiet mode, does not display copyright notice
/R - Remove CommServ from memory
/I - Load at specified vector even though vector

 is already used.

NOTE: Command line parameters are not case sensitive!

Figure 2. CommServ Command Line Parameters

The Vector Number parameter, /Vnn, defines the user selected Soft-
ware interrupt vector. CommServ reads this parameter and installs
the user interface Software Interrupt Service Routine (ISR) at the
chosen vector address. If the command line parameter is not within
the 60(hex) - 67(hex) limits CommServ returns a DOS ERROR-
LEVEL return code of 2. The default software interrupt vector
number is 60(hex) if the /Vnn is omitted.

If the specified load vector is already in use, and the /I parameter is
not used, CommServ returns a DOS ERRORLEVEL code of 6.

If the /I parameter is used, CommServ loads itself at the specified
vector, whether that vector is in use or not. This could result in un-
predictable behavior, and is not recommended.

2-1

LBI-38835

The Buffer Pool parameter, /Knn, indicates to CommServ the total
buffer space to be allocated in 1024 byte increments. The default
size of the buffer pool is 20480 bytes (20K). Once CommServ is
loaded, it must remain fixed in size. CommServ uses buffer pool
space for a Rx buffer and a Tx buffer for each port initialized using
the INITIALIZE command and subcommand 05. If the user does
not specify a large enough buffer pool (default or otherwise), the ap-
propriate return level and return code is returned in the initialization
DCB. The user can either reload CommServ with an increased
value of /Knn buffer pool allocation on the command line or specify
smaller Rx and/or Tx buffer sizes in the initialization parameter
structure. The default buffer pool is large enough to initialize any
two ports with the default Rx and Tx buffer sizes.

When the user closes a port, it’s buffer pool space is freed. Normal
buffer pool allocation is used so that several scattered small buffer
blocks that have been freed, may not be combined to make one
large Rx or Tx buffer unless there is enough contiguous free buffer
pool space. An error is returned if the command line parameter is
outside the specified limits. If the command line parameter is not
within the 5K - 50K limit, CommServ returns a DOS ERROR-
LEVEL return code of 1.

The parameter "/Q" informs CommServ not to display a banner
message at load time.

The /R parameter causes CommServ to close all open ports and re-
move itself from memory. Unless the /Q parameter is also used, a
prompt appears:

CommServ will be removed from memory. Continue? (Y/N):

informing the user that CommServ is to be removed from memory
and asking if the user wants to proceed.

The following DOS ERRORLEVEL codes are returned by Comm-
Serv if a problem is detected during the loading phase of the TSR
when loaded using a *.BAT file or from a program.

• ERRORLEVEL 0 = CommServ loaded without error.

• ERRORLEVEL 1 = CommServ /Knn command line parameter
is out of range.

2-2

LBI-38835

The Buffer Pool parameter, /Knn, indicates to CommServ the total
buffer space to be allocated in 1024 byte increments. The default
size of the buffer pool is 20480 bytes (20K). Once CommServ is
loaded, it must remain fixed in size. CommServ uses buffer pool
space for a Rx buffer and a Tx buffer for each port initialized using
the INITIALIZE command and subcommand 05. If the user does
not specify a large enough buffer pool (default or otherwise), the ap-
propriate return level and return code is returned in the initialization
DCB. The user can either reload CommServ with an increased
value of /Knn buffer pool allocation on the command line or specify
smaller Rx and/or Tx buffer sizes in the initialization parameter
structure. The default buffer pool is large enough to initialize any
two ports with the default Rx and Tx buffer sizes.

When the user closes a port, it’s buffer pool space is freed. Normal
buffer pool allocation is used so that several scattered small buffer
blocks that have been freed, may not be combined to make one
large Rx or Tx buffer unless there is enough contiguous free buffer
pool space. An error is returned if the command line parameter is
outside the specified limits. If the command line parameter is not
within the 5K - 50K limit, CommServ returns a DOS ERROR-
LEVEL return code of 1.

The parameter "/Q" informs CommServ not to display a banner
message at load time.

The /R parameter causes CommServ to close all open ports and re-
move itself from memory. Unless the /Q parameter is also used, a
prompt appears:

CommServ will be removed from memory. Continue? (Y/N):

informing the user that CommServ is to be removed from memory
and asking if the user wants to proceed.

The following DOS ERRORLEVEL codes are returned by Comm-
Serv if a problem is detected during the loading phase of the TSR
when loaded using a *.BAT file or from a program.

• ERRORLEVEL 0 = CommServ loaded without error.

• ERRORLEVEL 1 = CommServ /Knn command line parameter
is out of range.

2-2

LBI-38835

• ERRORLEVEL 2 = CommServ /Vnn command line parameter
is out of range.

• ERRORLEVEL 3 = CommServ command line parameter is not
recognized.

• ERRORLEVEL 4 = CommServ Terminate and Stay Resident
(TSR) is already installed.

• ERRORLEVEL 5 = CommServ TSR failed.

• ERRORLEVEL 6 = /Vnn vector in use.

The following appears on the display when CommServ is loaded
from DOS prompt command line:

• CommServ loaded without error and without the /Q option:

****** CommServ Version a.aa ******
Memory Resident Communications Server for RF Mobile Data
Copyright (c) 1993 Ericsson GE Mobile Communications, Inc.

a.aa = CommServ Manager Version (ASCII Characters).

• CommServ /Knn command line parameter is out of range:

CommServ Load Error! Invalid Buffer Pool Size Parameter /k3000
Valid range is /K5 - /K50

CommServ has detected an invalid Buffer Pool Command line pa-
rameter. The valid range is displayed on the error line. The user
must reload using this command line parameter set to a valid range.

• CommServ /Vnn command line parameter is out of range.

CommServ Load Error! Invalid Interrupt Vector Number Parameter /v20
Valid range is /V60 - /V67

CommServ has detected that the /V parameter, Select load vector, is
not within the valid range of 60 - 67. The user must reload
CommServ with a valid /Vnn parameter.

• CommServ command line parameter(s) not recognized.

CommServ Load Error! Unrecognized parameter /y
Valid parameters are /Vnn, /Knn, /Q, /R, /I

2-3

LBI-38835

• ERRORLEVEL 2 = CommServ /Vnn command line parameter
is out of range.

• ERRORLEVEL 3 = CommServ command line parameter is not
recognized.

• ERRORLEVEL 4 = CommServ Terminate and Stay Resident
(TSR) is already installed.

• ERRORLEVEL 5 = CommServ TSR failed.

• ERRORLEVEL 6 = /Vnn vector in use.

The following appears on the display when CommServ is loaded
from DOS prompt command line:

• CommServ loaded without error and without the /Q option:

****** CommServ Version a.aa ******
Memory Resident Communications Server for RF Mobile Data
Copyright (c) 1993 Ericsson GE Mobile Communications, Inc.

a.aa = CommServ Manager Version (ASCII Characters).

• CommServ /Knn command line parameter is out of range:

CommServ Load Error! Invalid Buffer Pool Size Parameter /k3000
Valid range is /K5 - /K50

CommServ has detected an invalid Buffer Pool Command line pa-
rameter. The valid range is displayed on the error line. The user
must reload using this command line parameter set to a valid range.

• CommServ /Vnn command line parameter is out of range.

CommServ Load Error! Invalid Interrupt Vector Number Parameter /v20
Valid range is /V60 - /V67

CommServ has detected that the /V parameter, Select load vector, is
not within the valid range of 60 - 67. The user must reload
CommServ with a valid /Vnn parameter.

• CommServ command line parameter(s) not recognized.

CommServ Load Error! Unrecognized parameter /y
Valid parameters are /Vnn, /Knn, /Q, /R, /I

2-3

LBI-38835

CommServ has detected an unrecognized command line parameter
when loading. The user must reload CommServ with only recog-
nized command line parameters.

• CommServ detected a currently active copy already loaded in
memory:

CommServ is already installed.

An attempt was made to load CommServ with a copy of the pro-
gram already in memory. CommServ does not load but returns this
error.

• Another process is using the interrupt vector number:

The specified interrupt vector is owned by another process.

CommServ has detected that the vector number specified in the
/Vnn parameter is already used by another process. CommServ
should be loaded at a different vector, or the /I parameter should be
used (not recommended).

• CommServ could not be loaded for an unknown reason:

CommServ Load Error! Unknown reason for load failure.

CommServ has attempted to install in memory and there was a prob-
lem that could not be determined. CommServ checks its own signa-
ture in memory before requesting the DOS Terminate-and-Stay-
Resident privilege. If CommServ finds that the signature is wrong
it does not remain in memory. The problem cannot be determined.

If CommServ requests TSR privilege and DOS returns to
CommServ for any reason, then CommServ returns this error and re-
moves itself from memory. The reason for the DOS return cannot
be determined.

2-4

LBI-38835

CommServ has detected an unrecognized command line parameter
when loading. The user must reload CommServ with only recog-
nized command line parameters.

• CommServ detected a currently active copy already loaded in
memory:

CommServ is already installed.

An attempt was made to load CommServ with a copy of the pro-
gram already in memory. CommServ does not load but returns this
error.

• Another process is using the interrupt vector number:

The specified interrupt vector is owned by another process.

CommServ has detected that the vector number specified in the
/Vnn parameter is already used by another process. CommServ
should be loaded at a different vector, or the /I parameter should be
used (not recommended).

• CommServ could not be loaded for an unknown reason:

CommServ Load Error! Unknown reason for load failure.

CommServ has attempted to install in memory and there was a prob-
lem that could not be determined. CommServ checks its own signa-
ture in memory before requesting the DOS Terminate-and-Stay-
Resident privilege. If CommServ finds that the signature is wrong
it does not remain in memory. The problem cannot be determined.

If CommServ requests TSR privilege and DOS returns to
CommServ for any reason, then CommServ returns this error and re-
moves itself from memory. The reason for the DOS return cannot
be determined.

2-4

LBI-38835

Figure 3. CommServ Initial Load Operations

2-5

LBI-38835

Figure 3. CommServ Initial Load Operations

2-5

LBI-38835

This page intentionally left blank.

2-6

LBI-38835

This page intentionally left blank.

2-6

LBI-38835

CHAPTER 3

MDAPI Communications Library (MDALib)

3.1 Features.

Easy to use ’C’ interface to CommServ.

3.1.1 MDALib Overview

This is a ’C’ language Application Programmer Interface (API) Li-
brary to CommServ.

These calls allow the application programmer to utilize CommServ
functions without knowing the details of the CommServ Control In-
terface or its associated structures.

Only a subset of these calls are required to use CommServ. Many
calls are only needed to customize CommServ to support non-de-
fault environments or just fine-tuning of CommServ parameters.

The Library follows all of the rules defined by the CommServ Con-
trol Interface. For example, a port must be opened before it can be
read from or written to, and must be initialized before it is opened.

MDALib supports multiple memory models with versions of the li-
brary for each memory model. The different versions are distin-
guished by a character at the end of the library file name as follows.

mdalibt.lib - tiny model
mdalibs.lib - small model
mdalibm.lib - medium model
mdalibc.lib - compact model
mdalibl.lib - large model
mdalibh.lib - huge model

LBI-38835

3-1

CHAPTER 3

MDAPI Communications Library (MDALib)

3.1 Features.

Easy to use ’C’ interface to CommServ.

3.1.1 MDALib Overview

This is a ’C’ language Application Programmer Interface (API) Li-
brary to CommServ.

These calls allow the application programmer to utilize CommServ
functions without knowing the details of the CommServ Control In-
terface or its associated structures.

Only a subset of these calls are required to use CommServ. Many
calls are only needed to customize CommServ to support non-de-
fault environments or just fine-tuning of CommServ parameters.

The Library follows all of the rules defined by the CommServ Con-
trol Interface. For example, a port must be opened before it can be
read from or written to, and must be initialized before it is opened.

MDALib supports multiple memory models with versions of the li-
brary for each memory model. The different versions are distin-
guished by a character at the end of the library file name as follows.

mdalibt.lib - tiny model
mdalibs.lib - small model
mdalibm.lib - medium model
mdalibc.lib - compact model
mdalibl.lib - large model
mdalibh.lib - huge model

LBI-38835

3-1

3.1.2 Miscellaneous CommServ Support Calls

The Miscellaneous CommServ Support Calls are described first.

BYTE cs_get_vector_number();
BOOL cs_is_installed();

char far * cs_get_cs_version_number();
char far * cs_get_cs_version_date();
char far * cs_get_api_version_number();
char far * cs_get_api_version_date();

The above calls are not required. They are provided as utilities only.

int cs_set_open_timeout();
int cs_set_write_timeout();

There are no default timeout values for the cs_write calls. Timeouts
must be set before many of the cs_write calls can be used. See spe-
cific calls to see if a timeout value is required.

int cs_enable_user_abort();
int cs_disable_user_abort();

The user abort feature allows the user to abort function calls that
use the timeout value by pressing a selectable key sequence.

int cs_reset_status();

This function is used in relationship to the cs_get_modem_status
and cs_get_line_status function calls.

Note: "BYTE", "BOOL" and "WORD" are not standard ’C’ types.
See the MDALIB.H file for the actual type definition. There is a
discussion of return codes at the end of this document.

LBI-38835

3-2

3.1.2 Miscellaneous CommServ Support Calls

The Miscellaneous CommServ Support Calls are described first.

BYTE cs_get_vector_number();
BOOL cs_is_installed();

char far * cs_get_cs_version_number();
char far * cs_get_cs_version_date();
char far * cs_get_api_version_number();
char far * cs_get_api_version_date();

The above calls are not required. They are provided as utilities only.

int cs_set_open_timeout();
int cs_set_write_timeout();

There are no default timeout values for the cs_write calls. Timeouts
must be set before many of the cs_write calls can be used. See spe-
cific calls to see if a timeout value is required.

int cs_enable_user_abort();
int cs_disable_user_abort();

The user abort feature allows the user to abort function calls that
use the timeout value by pressing a selectable key sequence.

int cs_reset_status();

This function is used in relationship to the cs_get_modem_status
and cs_get_line_status function calls.

Note: "BYTE", "BOOL" and "WORD" are not standard ’C’ types.
See the MDALIB.H file for the actual type definition. There is a
discussion of return codes at the end of this document.

LBI-38835

3-2

3.1.3 CommServ Port Parameter Calls

During CommServ Port Parameter Calls the Library calls appropri-
ate CS INITIALIZE subcommand to set the proper parameters.

int cs_set_destination_id();
int cs_set_rx_buffer_size();
int cs_set_tx_buffer_size();
int cs_set_defaults();

The following table summarizes the ports and their default settings.
The above calls are necessary to change a port parameter from its
default setting. The destination ID must be changed from the de-
fault setting before a port can be opened.

Figure 24. Port Parameter Defaults

3.1.4 CommServ Communication Calls

During CommServ Communication Calls the Library makes an ap-
propriate call to CommServ to do the actual function requested.

int cs_init();
int cs_open_rf();

int cs_write_msg_wait_ack();
int cs_write_addr_msg_wait_ack();
int cs_write_msg_ignore_ack();
int cs_write_addr_msg_ignore_ack();
int cs_write_msg_no_wait();
int cs_write_addr_msg_no_wait();
int cs_write_msg_ack_status();
int cs_cancel_write_msg_no_wait();

LBI-38835

3-3

3.1.3 CommServ Port Parameter Calls

During CommServ Port Parameter Calls the Library calls appropri-
ate CS INITIALIZE subcommand to set the proper parameters.

int cs_set_destination_id();
int cs_set_rx_buffer_size();
int cs_set_tx_buffer_size();
int cs_set_defaults();

The following table summarizes the ports and their default settings.
The above calls are necessary to change a port parameter from its
default setting. The destination ID must be changed from the de-
fault setting before a port can be opened.

Figure 24. Port Parameter Defaults

3.1.4 CommServ Communication Calls

During CommServ Communication Calls the Library makes an ap-
propriate call to CommServ to do the actual function requested.

int cs_init();
int cs_open_rf();

int cs_write_msg_wait_ack();
int cs_write_addr_msg_wait_ack();
int cs_write_msg_ignore_ack();
int cs_write_addr_msg_ignore_ack();
int cs_write_msg_no_wait();
int cs_write_addr_msg_no_wait();
int cs_write_msg_ack_status();
int cs_cancel_write_msg_no_wait();

LBI-38835

3-3

int cs_read_addr_msg ();
int cs_read_msg ();
int cs_close ();
int cs_remove ();

int cs_interrupt();

Note: The cs_read_addr_msg and cs_read_msg function calls use
buffer_size, but all the other calls use buffer_count. The buff-
er_size variable gives the size of the buffer or memory area, but
buffer_count refers to the actual number of bytes being stored at
that memory location. buffer_size is always larger than (or equal)
to buffer_count when referring to the same memory area. In this
call the application doesn’t know exactly how large the incoming
message is, so it must provide a larger than necessary buffer space
to hold it.

These are the calls that do the real work of communication. The ap-
plication programmer must use these calls in a specific order.

Once the port has been initialized with the cs_init function call, the
port can be opened with the cs_open_rf function call. Remember to
set the open_timeout with the cs_set_open_timeout call if a
timeout longer than the default is required.

Notes:
After a connection is made with the other side, the cs_read
and cs_write calls are used to transfer data through the commu-
nications port.

Remember to set write_timeout with the cs_set_write_
timeout call before issuing a write command requiring a
timeout.

When communications are completed the port is closed with the
cs_close function call.

The following table summarizes the various read and write com-
mands.

LBI-38835

3-4

int cs_read_addr_msg ();
int cs_read_msg ();
int cs_close ();
int cs_remove ();

int cs_interrupt();

Note: The cs_read_addr_msg and cs_read_msg function calls use
buffer_size, but all the other calls use buffer_count. The buff -
er_size variable gives the size of the buffer or memory area, but
buffer_count refers to the actual number of bytes being stored at
that memory location. buffer_size is always larger than (or equal)
to buffer_count when referring to the same memory area. In this
call the application doesn’t know exactly how large the incoming
message is, so it must provide a larger than necessary buffer space
to hold it.

These are the calls that do the real work of communication. The ap-
plication programmer must use these calls in a specific order.

Once the port has been initialized with the cs_init function call, the
port can be opened with the cs_open_rf function call. Remember to
set the open_timeout with the cs_set_open_timeout call if a
timeout longer than the default is required.

Notes:
After a connection is made with the other side, the cs_read
and cs_write calls are used to transfer data through the commu-
nications port.

Remember to set write_timeout with the cs_set_write_
timeout call before issuing a write command requiring a
timeout.

When communications are completed the port is closed with the
cs_close function call.

The following table summarizes the various read and write com-
mands.

LBI-38835

3-4

Figure 25. Read/Write Summary

Notes:

1. The timeout from the cs_write_msg_no_wait, or
cs_write_addr_msg_no_wait calls is extended after
CommServ returns and is used in conjunction with the
cs_write_msg_ack_status call that must follow.

2. CommServ returns when all the characters have been put in
the Tx buffer or when the timeout has expired. The applica-
tion can determine the amount of available space in the Tx
buffer by using the cs_get_tx_buffer_count call and then sub-
tracting from the tx_buffer_size set with the cs_set_tx_buff-
er_size call (or the default). It should be noted that writes
larger than the tx_buffer_size can be made. However, the
timeout value must be large enough to allow all characters (at
the port’s current Baud rate) to be sent and an ACK, if ex-
pected, to be returned within the timeout or CommServ re-
turns an error. If the timeout is not long enough, at the time
the error is reported part or all of the message is normally
transmitted leaving the connection in an unknown state.

LBI-38835

3-5

Figure 25. Read/Write Summary

Notes:

1. The timeout from the cs_write_msg_no_wait, or
cs_write_addr_msg_no_wait calls is extended after
CommServ returns and is used in conjunction with the
cs_write_msg_ack_status call that must follow.

2. CommServ returns when all the characters have been put in
the Tx buffer or when the timeout has expired. The applica-
tion can determine the amount of available space in the Tx
buffer by using the cs_get_tx_buffer_count call and then sub-
tracting from the tx_buffer_size set with the cs_set_tx_buff-
er_size call (or the default). It should be noted that writes
larger than the tx_buffer_size can be made. However, the
timeout value must be large enough to allow all characters (at
the port’s current Baud rate) to be sent and an ACK, if ex-
pected, to be returned within the timeout or CommServ re-
turns an error. If the timeout is not long enough, at the time
the error is reported part or all of the message is normally
transmitted leaving the connection in an unknown state.

LBI-38835

3-5

3. Because of the way flow control operates in CommServ, the
rx_buffer_size should be selected carefully. Flow control is
implemented at the message level, that is, there must be room
in the receive buffer for the maximum size message plus proto-
col overhead (a total of 531 bytes) or CommServ will indicate
to the RDI that no more data is to be transmitted. To calculate
the proper Rx buffer size, take the average expected message
size, add 18 bytes, multiply by the number of messages the
buffer must hold between reads, then add 531 bytes.

3.1.5 CommServ Trace Calls

During CommServ Trace Calls the Library and CommServ share
the work. CommServ is called to setup the tracing environment and
actually put the data into the trace buffers. The Library handles the
memory allocation for the application and performs the reads from
the trace buffers similar to the way cs_read calls read characters
from the communication buffers.
Note: The Library has default trace buffers. If more than 128 bytes
of trace are required, then the cs_alloc_trace_buffers function call
allocates more space.

int cs_alloc_trace_buffers();
int cs_init_trace();
int cs_start_trace();
int cs_rx_trace_read();
int cs_tx_trace_read();
int cs_stop_trace();
int cs_free_trace_buffers();

These functions calls can be used to verify the data being sent and
received at the CommServ transmit and receive buffers. Again, the
application programmer must use these calls in a specific order.

Even before the port has been opened with the appropriate cs_open
call, but after the port has been initialized by cs_init, the trace facil-
ity can be utilized. First, the cs_alloc_trace_buffers function call
allocates buffers to contain data gathered by CommServ during the
trace following reads and writes. The cs_init_trace function call
tells CommServ where to put the data.

LBI-38835

3-6

3. Because of the way flow control operates in CommServ, the
rx_buffer_size should be selected carefully. Flow control is
implemented at the message level, that is, there must be room
in the receive buffer for the maximum size message plus proto-
col overhead (a total of 531 bytes) or CommServ will indicate
to the RDI that no more data is to be transmitted. To calculate
the proper Rx buffer size, take the average expected message
size, add 18 bytes, multiply by the number of messages the
buffer must hold between reads, then add 531 bytes.

3.1.5 CommServ Trace Calls

During CommServ Trace Calls the Library and CommServ share
the work. CommServ is called to setup the tracing environment and
actually put the data into the trace buffers. The Library handles the
memory allocation for the application and performs the reads from
the trace buffers similar to the way cs_read calls read characters
from the communication buffers.
Note: The Library has default trace buffers. If more than 128 bytes
of trace are required, then the cs_alloc_trace_buffers function call
allocates more space.

int cs_alloc_trace_buffers();
int cs_init_trace();
int cs_start_trace();
int cs_rx_trace_read();
int cs_tx_trace_read();
int cs_stop_trace();
int cs_free_trace_buffers();

These functions calls can be used to verify the data being sent and
received at the CommServ transmit and receive buffers. Again, the
application programmer must use these calls in a specific order.

Even before the port has been opened with the appropriate cs_open
call, but after the port has been initialized by cs_init, the trace facil-
ity can be utilized. First, the cs_alloc_trace_buffers function call
allocates buffers to contain data gathered by CommServ during the
trace following reads and writes. The cs_init_trace function call
tells CommServ where to put the data.

LBI-38835

3-6

Use the cs_start_trace function call to start tracing and the
cs_stop_trace function call to stop tracing. The trace can be started
and stopped independently of the data being transferred by reads
and writes so that specific transfers can be traced and others ignored.

Use the cs_rx_trace_read and cs_tx_trace_read function calls to re-
trieve data captured during reads and writes. These calls should be
made frequently enough to avoid data being overrun in the trace
buffers. No error is reported if the trace buffer is overrun. The
sizes of the trace buffers are set during the cs_alloc_trace_buffers
function call. Both transmit and receive are traced when tracing is
enabled; however, the application can ignore data received if it is
only interested in what is being captured during transmission. To
free up the trace buffers after they are used, use the cs_free_trace_
buffers function call.

3.1.6 CommServ Status and Statistics Calls

During CommServ Status Calls the Library calls CommServ Status
Command to retrieve the desired status information or message sta-
tistics.

Status Calls

BYTE cs_get_state();
BYTE cs_get_rx_msg_count();
WORD cs_get_options();
BYTE cs_get_modem_status();
BYTE cs_get_line_status();
WORD cs_get_rx_buffer_count();
WORD cs_get_tx_buffer_count();

Statistics Calls

WORD cs_get_rx_count();
WORD cs_get_rx_errors();
WORD cs_get_tx_count();
WORD cs_get_tx_errors();
WORD cs_get_tx_retries();

LBI-38835

3-7

Use the cs_start_trace function call to start tracing and the
cs_stop_trace function call to stop tracing. The trace can be started
and stopped independently of the data being transferred by reads
and writes so that specific transfers can be traced and others ignored.

Use the cs_rx_trace_read and cs_tx_trace_read function calls to re-
trieve data captured during reads and writes. These calls should be
made frequently enough to avoid data being overrun in the trace
buffers. No error is reported if the trace buffer is overrun. The
sizes of the trace buffers are set during the cs_alloc_trace_buffers
function call. Both transmit and receive are traced when tracing is
enabled; however, the application can ignore data received if it is
only interested in what is being captured during transmission. To
free up the trace buffers after they are used, use the cs_free_trace_
buffers function call.

3.1.6 CommServ Status and Statistics Calls

During CommServ Status Calls the Library calls CommServ Status
Command to retrieve the desired status information or message sta-
tistics.

Status Calls

BYTE cs_get_state();
BYTE cs_get_rx_msg_count();
WORD cs_get_options();
BYTE cs_get_modem_status();
BYTE cs_get_line_status();
WORD cs_get_rx_buffer_count();
WORD cs_get_tx_buffer_count();

Statistics Calls

WORD cs_get_rx_count();
WORD cs_get_rx_errors();
WORD cs_get_tx_count();
WORD cs_get_tx_errors();
WORD cs_get_tx_retries();

LBI-38835

3-7

Status calls return specific information that may be useful to the ap-
plication program. For example, if the cs_get_rx_msg_count indi-
cates that no messages are waiting, then a cs_read_msg function
call is unnecessary.

3.2 MDALib Call Format

Each call supported by the MDAPI Library is described in detail us-
ing the following format:

• SUMMARY OF CALL

The syntax of the call is described including the type of return infor-
mation and parameters, if any.

All calls show that the file MDALIB.H should be included in the
source file. This is needed for the prototype definition. For some
calls the parameters are constants and they are defined in the
MDALIB.H file.

• DESCRIPTION OF FUNCTION

The function of the call is described in detail.

• DESCRIPTION OF PARAMETERS

The parameters of the call are described.

On some calls a pointer is passed as a parameter so that a variable
in the application area can be updated.

• RETURN VALUES

Many calls to the Library return an integer value. This value indi-
cates the completion status or return level for the call. These levels
range from successful to fatal with several levels in between. A
global variable, cs_rtn_level, is set to this value. If a call was un-
successful a global variable, cs_rtn_code, is set to indicate the spe-
cific error condition that generated this level. If a call was
successful cs_rtn_code indicates success. Refer to the RETURN
LEVELs and RETURN CODEs section of this document for a de-
tailed description of the return values.

LBI-38835

3-8

Status calls return specific information that may be useful to the ap-
plication program. For example, if the cs_get_rx_msg_count indi-
cates that no messages are waiting, then a cs_read_msg function
call is unnecessary.

3.2 MDALib Call Format

Each call supported by the MDAPI Library is described in detail us-
ing the following format:

• SUMMARY OF CALL

The syntax of the call is described including the type of return infor-
mation and parameters, if any.

All calls show that the file MDALIB.H should be included in the
source file. This is needed for the prototype definition. For some
calls the parameters are constants and they are defined in the
MDALIB.H file.

• DESCRIPTION OF FUNCTION

The function of the call is described in detail.

• DESCRIPTION OF PARAMETERS

The parameters of the call are described.

On some calls a pointer is passed as a parameter so that a variable
in the application area can be updated.

• RETURN VALUES

Many calls to the Library return an integer value. This value indi-
cates the completion status or return level for the call. These levels
range from successful to fatal with several levels in between. A
global variable, cs_rtn_level, is set to this value. If a call was un-
successful a global variable, cs_rtn_code, is set to indicate the spe-
cific error condition that generated this level. If a call was
successful cs_rtn_code indicates success. Refer to the RETURN
LEVELs and RETURN CODEs section of this document for a de-
tailed description of the return values.

LBI-38835

3-8

All of the cs_get calls, and the cs_is_installed call, return the de-
sired information as the return value (the return types BOOL,
BYTE, and WORD are defined in MDALIB.H). If an error oc-
curred during the call, the return value is Hex FF or Hex FFFF de-
pending on the size of the expected return value. If the Library
returns a far pointer, (for instance, cs_get_cs_version_number, or
cs_get_cs_version_date) or if an error occurs, the return value is a
null pointer. In either case the two global values are set to the indi-
cated error. cs_return_level is set to indicate the level of the error
and cs_rtn_code again indicates the specific error condition.

Some invalid parameters passed during Port Parameter Calls (cs_set
calls) cannot be found until a cs_init call verifies the port parameter
settings.

Most errors are generated by CommServ and not the MDAPI Li-
brary. These errors are passed back directly without the Library’s
intervention. When the Library generates the error codes they are
returned in the same fashion as with CommServ, with return levels
and return codes.

3.3 MDALib Calls

cs_alloc_trace_buffers()

Syntax of Function

#include "mdalib.h"
int far cs_alloc_trace_buffers (BYTE port_number,
 WORD rx_trace_size,
 WORD tx_trace_size);

Description of Function

This function allocates space from DOS to be used for the buffers
that trace the receive and transmit lines of the port indicated.

LBI-38835

3-9

All of the cs_get calls, and the cs_is_installed call, return the de-
sired information as the return value (the return types BOOL,
BYTE, and WORD are defined in MDALIB.H). If an error oc-
curred during the call, the return value is Hex FF or Hex FFFF de-
pending on the size of the expected return value. If the Library
returns a far pointer, (for instance, cs_get_cs_version_number, or
cs_get_cs_version_date) or if an error occurs, the return value is a
null pointer. In either case the two global values are set to the indi-
cated error. cs_return_level is set to indicate the level of the error
and cs_rtn_code again indicates the specific error condition.

Some invalid parameters passed during Port Parameter Calls (cs_set
calls) cannot be found until a cs_init call verifies the port parameter
settings.

Most errors are generated by CommServ and not the MDAPI Li-
brary. These errors are passed back directly without the Library’s
intervention. When the Library generates the error codes they are
returned in the same fashion as with CommServ, with return levels
and return codes.

3.3 MDALib Calls

cs_alloc_trace_buffers()

Syntax of Function

#include "mdalib.h"
int far cs_alloc_trace_buffers (BYTE port_number,
 WORD rx_trace_size,
 WORD tx_trace_size);

Description of Function

This function allocates space from DOS to be used for the buffers
that trace the receive and transmit lines of the port indicated.

LBI-38835

3-9

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1). The rx_trace_size is the size of the receive trace buffer and
must be from 2 to 65535 KB. The tx_trace_size is the size of the
transmit trace buffer and must also be from 2 to 65535 KB. These
buffers should be large enough to hold the amount of data saved be-
tween each cs_rx_trace_read or cs_tx_trace_read function call.

Return Values

The return value is zero if the operation was successful. A non-zero
value is returned if the trace buffers are already allocated or if there
is not enough memory available to allocate the buffers. The global
variables cs_rtn_level and cs_rtn_code are set with the return level
and return code. (See "Return Levels and Return Codes" in Appen-
dix A.)

cs_cancel_write_msg_no_wait()

Syntax of Function

#include "mdalib.h"
int far cs_cancel_write_msg_no_wait (BYTE port_number);

Description of Function

This call cancels the WAITING_FOR_ACK state that the
port was put into by cs_write_msg_no_wait. The cs_write_msg_
no_wait function returns to the application before the ACK/NAK ar-
rives, therefore CommServ waits for the write_timeout period be-
fore returning an error. This function forces CommServ to stop
waiting for the ACK and return to an open state.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-10

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1). The rx_trace_size is the size of the receive trace buffer and
must be from 2 to 65535 KB. The tx_trace_size is the size of the
transmit trace buffer and must also be from 2 to 65535 KB. These
buffers should be large enough to hold the amount of data saved be-
tween each cs_rx_trace_read or cs_tx_trace_read function call.

Return Values

The return value is zero if the operation was successful. A non-zero
value is returned if the trace buffers are already allocated or if there
is not enough memory available to allocate the buffers. The global
variables cs_rtn_level and cs_rtn_code are set with the return level
and return code. (See "Return Levels and Return Codes" in Appen-
dix A.)

cs_cancel_write_msg_no_wait()

Syntax of Function

#include "mdalib.h"
int far cs_cancel_write_msg_no_wait (BYTE port_number);

Description of Function

This call cancels the WAITING_FOR_ACK state that the
port was put into by cs_write_msg_no_wait. The cs_write_msg_
no_wait function returns to the application before the ACK/NAK ar-
rives, therefore CommServ waits for the write_timeout period be-
fore returning an error. This function forces CommServ to stop
waiting for the ACK and return to an open state.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-10

Return Values

The return value is zero if the operation is successful. If an error oc-
curs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_close()

Syntax of Function

#include "mdalib.h"
int far cs_close (BYTE port_number);

Description of Function

The port indicated is closed. All characters waiting to be transmit-
ted in the Tx buffer and all characters waiting to be read in the Rx
buffer are discarded.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is zero if the operation is successful. If an error oc-
curs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-11

Return Values

The return value is zero if the operation is successful. If an error oc-
curs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_close()

Syntax of Function

#include "mdalib.h"
int far cs_close (BYTE port_number);

Description of Function

The port indicated is closed. All characters waiting to be transmit-
ted in the Tx buffer and all characters waiting to be read in the Rx
buffer are discarded.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is zero if the operation is successful. If an error oc-
curs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-11

cs_disable_user_abort()

Syntax of Function

#include "mdalib.h"
int far cs_disable_user_abort (void);

Description of Function

This function disables the key sequence that can be used to abort
calls that use a timeout. It disables the feature for all ports. See
cs_enable_user_abort.

Description of Parameters

None

Return Values

The return value is zero if the operation is successful. If an error oc-
curs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_enable_user_abort()

Syntax of Function

#include "mdalib.h"
int far cs_enable_user_abort (void far *key_pattern,
 WORD pattern_count);

Description of Function

This function sets and enables the key_pattern that can abort calls
with timeouts. The key_pattern is a series of characters that
CommServ looks for in the keyboard buffer while waiting for a
timed event to be completed. At least one of the ports must be in-
itialized when this command is called. CommServ leaves the
key_pattern in the keyboard buffer, so the application must deal

LBI-38835

3-12

cs_disable_user_abort()

Syntax of Function

#include "mdalib.h"
int far cs_disable_user_abort (void);

Description of Function

This function disables the key sequence that can be used to abort
calls that use a timeout. It disables the feature for all ports. See
cs_enable_user_abort.

Description of Parameters

None

Return Values

The return value is zero if the operation is successful. If an error oc-
curs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_enable_user_abort()

Syntax of Function

#include "mdalib.h"
int far cs_enable_user_abort (void far *key_pattern,
 WORD pattern_count);

Description of Function

This function sets and enables the key_pattern that can abort calls
with timeouts. The key_pattern is a series of characters that
CommServ looks for in the keyboard buffer while waiting for a
timed event to be completed. At least one of the ports must be in-
itialized when this command is called. CommServ leaves the
key_pattern in the keyboard buffer, so the application must deal

LBI-38835

3-12

with the abort pattern once the aborted function returns. The active
key_pattern can be changed at any time without first disabling it.
The user abort feature, once enabled, is active for all ports. You
cannot have a different key_pattern for each port.

Description of Parameters

The key_pattern is a far pointer to a data buffer containing the se-
quence. The pattern_count value represents the number of bytes
in the key_pattern, and must be from 1 to 4.

Return Values

The return value is a zero if the operation is successful. A non-zero
error code is returned if the key_pattern pointer is null, pat-
tern_count is zero or pattern_count exceeds four bytes. Error
level and code are returned in the global variables cs_rtn_level and
cs_rtn_code, and the function returns the value of cs_rtn_level.

cs_free_trace_buffers()

Syntax of Function

#include "mdalib.h"
int far cs_free_trace_buffers (BYTE port_number);

Description of Function

This function frees the buffers allocated in the cs_alloc_trace_buff-
ers call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-13

with the abort pattern once the aborted function returns. The active
key_pattern can be changed at any time without first disabling it.
The user abort feature, once enabled, is active for all ports. You
cannot have a different key_pattern for each port.

Description of Parameters

The key_pattern is a far pointer to a data buffer containing the se-
quence. The pattern_count value represents the number of bytes
in the key_pattern, and must be from 1 to 4.

Return Values

The return value is a zero if the operation is successful. A non-zero
error code is returned if the key_pattern pointer is null, pat-
tern_count is zero or pattern_count exceeds four bytes. Error
level and code are returned in the global variables cs_rtn_level and
cs_rtn_code, and the function returns the value of cs_rtn_level.

cs_free_trace_buffers()

Syntax of Function

#include "mdalib.h"
int far cs_free_trace_buffers (BYTE port_number);

Description of Function

This function frees the buffers allocated in the cs_alloc_trace_buff-
ers call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-13

Return Values

The return value is zero if the operation is successful. If an error oc-
curs in the execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_get_api_version_date()

Syntax of Function

#include "mdalib.h"
char far *far cs_get_api_version_date (void);

Description of Function

This function returns a far pointer to an ASCII string containing the
API version date.

Description of Parameters

None

Return Values

The return value is a far pointer to an ASCII string containing the
API version date. If an error occurs in the execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and a null pointer is returned.

cs_get_api_version_number()

Syntax of Function

#include "mdalib.h"
char far *far cs_get_api_version_number (void);

LBI-38835

3-14

Return Values

The return value is zero if the operation is successful. If an error oc-
curs in the execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_get_api_version_date()

Syntax of Function

#include "mdalib.h"
char far *far cs_get_api_version_date (void);

Description of Function

This function returns a far pointer to an ASCII string containing the
API version date.

Description of Parameters

None

Return Values

The return value is a far pointer to an ASCII string containing the
API version date. If an error occurs in the execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and a null pointer is returned.

cs_get_api_version_number()

Syntax of Function

#include "mdalib.h"
char far *far cs_get_api_version_number (void);

LBI-38835

3-14

Description of Function

This function returns a far pointer to an ASCII string containing the
API version number.

Description of Parameters

None

Return Values

The return value is a far pointer to an ASCII string containing the
API version number. If an error occurs in the execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and a null pointer is returned.

cs_get_cs_version_date()

Syntax of Function

#include "mdalib.h"
char far *far cs_get_cs_version_date (void);

Description of Function

This function returns a far pointer to an ASCII string containing the
CommServ version date.

Description of Parameters

None

Return Values

The return value is a far pointer to an ASCII string containing the
API version number. If an error occurs in the execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and a null pointer is returned.

LBI-38835

3-15

Description of Function

This function returns a far pointer to an ASCII string containing the
API version number.

Description of Parameters

None

Return Values

The return value is a far pointer to an ASCII string containing the
API version number. If an error occurs in the execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and a null pointer is returned.

cs_get_cs_version_date()

Syntax of Function

#include "mdalib.h"
char far *far cs_get_cs_version_date (void);

Description of Function

This function returns a far pointer to an ASCII string containing the
CommServ version date.

Description of Parameters

None

Return Values

The return value is a far pointer to an ASCII string containing the
API version number. If an error occurs in the execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and a null pointer is returned.

LBI-38835

3-15

cs_get_cs_version_number()

Syntax of Function

#include "mdalib.h"
char far *far cs_get_cs_version_number (void);

Description of Function

This function returns a far pointer to an ASCII string containing the
CommServ version number.

Description of Parameters

None

Return Values

The return value is a far pointer to an ASCII string containing the
API version number. If an error occurs in the execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and a null pointer is returned.

cs_get_line_status()

Syntax of Function

#include "mdalib.h"
BYTE far cs_get_line_status (BYTE port_number);

Description of Function

This function returns the contents of the accumulated line status in
CommServ. See the cs_reset_status function call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-16

cs_get_cs_version_number()

Syntax of Function

#include "mdalib.h"
char far *far cs_get_cs_version_number (void);

Description of Function

This function returns a far pointer to an ASCII string containing the
CommServ version number.

Description of Parameters

None

Return Values

The return value is a far pointer to an ASCII string containing the
API version number. If an error occurs in the execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and a null pointer is returned.

cs_get_line_status()

Syntax of Function

#include "mdalib.h"
BYTE far cs_get_line_status (BYTE port_number);

Description of Function

This function returns the contents of the accumulated line status in
CommServ. See the cs_reset_status function call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-16

Return Values

The return value is the line status. The byte is bit oriented, defini-
tions are as follows.

Bit 7 Line - Error in Receiver FIFO Register
(16550 FIFO buffered UART)

Bit 6 Line - Transmitter Shift Register Empty
Bit 5 Line - Transmitter Holding Register Empty
Bit 4 Line - Break Interrupt
Bit 3 Line - Framing Error
Bit 2 Line - Parity Error
Bit 1 Line - Overrun Error
Bit 0 Line - Data Ready

If an error occurs in the execution of the function, the global vari-
ables cs_rtn_level and cs_rtn_code are set with an error level and
code, and a value of FF(hex) is returned.

cs_get_modem_status()

Syntax of Function

#include "mdalib.h"
BYTE far cs_get_modem_status (BYTE port_number);

Description of Function

This function returns the contents of the accumulated modem
status in CommServ. See the cs_reset_status call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-17

Return Values

The return value is the line status. The byte is bit oriented, defini-
tions are as follows.

Bit 7 Line - Error in Receiver FIFO Register
(16550 FIFO buffered UART)

Bit 6 Line - Transmitter Shift Register Empty
Bit 5 Line - Transmitter Holding Register Empty
Bit 4 Line - Break Interrupt
Bit 3 Line - Framing Error
Bit 2 Line - Parity Error
Bit 1 Line - Overrun Error
Bit 0 Line - Data Ready

If an error occurs in the execution of the function, the global vari-
ables cs_rtn_level and cs_rtn_code are set with an error level and
code, and a value of FF(hex) is returned.

cs_get_modem_status()

Syntax of Function

#include "mdalib.h"
BYTE far cs_get_modem_status (BYTE port_number);

Description of Function

This function returns the contents of the accumulated modem
status in CommServ. See the cs_reset_status call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-17

Return Values

The return value is the modem status. The byte is bit oriented, defi-
nitions are as follows.

Bit 7 Data Carrier Detect
Bit 6 Ring Indicator
Bit 5 Data Set Ready
Bit 4 Clear to Send
Bit 3 Delta Carrier Detect
Bit 2 Trailing Edge Ring Indicator
Bit 1 Delta Data Set Ready
Bit 0 Delta Clear to Send

If an error occurs during execution of the function the global vari-
ables cs_rtn_level and cs_rtn_code are set with an error level and
code, and a value of FF(hex) is returned.

cs_get_options()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_options (BYTE port_number);

Description of Function

This function returns the current state of the trace and user abort.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the current state of the trace and user abort. The
word is bit oriented, definitions are as follows.

LBI-38835

3-18

Return Values

The return value is the modem status. The byte is bit oriented, defi-
nitions are as follows.

Bit 7 Data Carrier Detect
Bit 6 Ring Indicator
Bit 5 Data Set Ready
Bit 4 Clear to Send
Bit 3 Delta Carrier Detect
Bit 2 Trailing Edge Ring Indicator
Bit 1 Delta Data Set Ready
Bit 0 Delta Clear to Send

If an error occurs during execution of the function the global vari-
ables cs_rtn_level and cs_rtn_code are set with an error level and
code, and a value of FF(hex) is returned.

cs_get_options()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_options (BYTE port_number);

Description of Function

This function returns the current state of the trace and user abort.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the current state of the trace and user abort. The
word is bit oriented, definitions are as follows.

LBI-38835

3-18

Bit 15 Rx Trace Initialized
Bit 14 Rx Trace Started
Bit 13 Tx Trace Initialized
Bit 12 Tx Trace Started
Bit 11 User Abort Enabled
Bit 10-0 Reserved = 0

If an error occurs in the execution of the function, the global vari-
ables cs_rtn_level and cs_rtn_code are set with an error level and
code, and a value of FFFF(hex) is returned.

cs_get_rx_buffer_count()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_rx_buffer_count (BYTE port_number);

Description of Function

This function returns the number of characters waiting to be read
from the Rx buffer. The Rx buffer count includes an overhead of
18 bytes for each message in the buffer.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the number of characters waiting in the Rx buff-
er. If an error occurs in the execution of the function, the global
variables cs_rtn_level and cs_rtn_code are set with an error level
and code, and a value of FFFF(hex) is returned.

LBI-38835

3-19

Bit 15 Rx Trace Initialized
Bit 14 Rx Trace Started
Bit 13 Tx Trace Initialized
Bit 12 Tx Trace Started
Bit 11 User Abort Enabled
Bit 10-0 Reserved = 0

If an error occurs in the execution of the function, the global vari-
ables cs_rtn_level and cs_rtn_code are set with an error level and
code, and a value of FFFF(hex) is returned.

cs_get_rx_buffer_count()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_rx_buffer_count (BYTE port_number);

Description of Function

This function returns the number of characters waiting to be read
from the Rx buffer. The Rx buffer count includes an overhead of
18 bytes for each message in the buffer.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the number of characters waiting in the Rx buff-
er. If an error occurs in the execution of the function, the global
variables cs_rtn_level and cs_rtn_code are set with an error level
and code, and a value of FFFF(hex) is returned.

LBI-38835

3-19

cs_get_rx_count()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_rx_count (BYTE port_number);

Description of Function

This function returns the number of messages successfully received
since opening the port, or since the last call to reset statistics [cs_re-
set_msg_stats();].

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the number of messages received. If an error oc-
curs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and a value of FFFF(hex) is returned.

cs_get_rx_errors()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_rx_errors (BYTE port_number);

Description of Function

This function returns the number of receive errors that have oc-
curred since the port was opened, or since the last call to reset statis-
tics [cs_reset_msg_stats()].

LBI-38835

3-20

cs_get_rx_count()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_rx_count (BYTE port_number);

Description of Function

This function returns the number of messages successfully received
since opening the port, or since the last call to reset statistics [cs_re-
set_msg_stats();].

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the number of messages received. If an error oc-
curs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and a value of FFFF(hex) is returned.

cs_get_rx_errors()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_rx_errors (BYTE port_number);

Description of Function

This function returns the number of receive errors that have oc-
curred since the port was opened, or since the last call to reset statis-
tics [cs_reset_msg_stats()].

LBI-38835

3-20

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the number of receive errors. If an error occurs
during execution of the function, the global variables cs_rtn_level
and cs_rtn_code are set with an error level and code, and a value of
FFFF(hex) is returned.

cs_get_rx_msg_count()

Syntax of Function

#include "mdalib.h"
BYTE far cs_get_rx_msg_count (BYTE port_number);

Description of Function

This function returns the number of whole messages waiting to be
read from the Rx buffer.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the number of messages waiting in the Rx buff-
er. If an error occurs during execution of the function, the global
variables cs_rtn_level and cs_rtn_code are set with an error level
and code, and a value of FF(hex) is returned. CommServ reports up
to 254 messages. If more than that exist, only 254 are indicated.
The actual count is reported when the message count is below 255.

LBI-38835

3-21

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the number of receive errors. If an error occurs
during execution of the function, the global variables cs_rtn_level
and cs_rtn_code are set with an error level and code, and a value of
FFFF(hex) is returned.

cs_get_rx_msg_count()

Syntax of Function

#include "mdalib.h"
BYTE far cs_get_rx_msg_count (BYTE port_number);

Description of Function

This function returns the number of whole messages waiting to be
read from the Rx buffer.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the number of messages waiting in the Rx buff-
er. If an error occurs during execution of the function, the global
variables cs_rtn_level and cs_rtn_code are set with an error level
and code, and a value of FF(hex) is returned. CommServ reports up
to 254 messages. If more than that exist, only 254 are indicated.
The actual count is reported when the message count is below 255.

LBI-38835

3-21

cs_get_state()

Syntax of Function

#include "mdalib.h"
BYTE far cs_get_state (BYTE port_number);

Description of Function

This function return the current port state.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The port state values shown below are defined in MDALIB.H.

CLOSED - The port is currently closed.

INITIALIZED - The port is currently initialized.

OPENED - The port is currently open.

WAITING_FOR_ACK - The API was called with the
cs_write_msg_no_wait and CommServ is waiting for an ACK.

If an error occurs during execution of the function, the global vari-
ables cs_rtn_level and cs_rtn_code are set with an error level and
code, and a value of FF(hex) is returned.

LBI-38835

3-22

cs_get_state()

Syntax of Function

#include "mdalib.h"
BYTE far cs_get_state (BYTE port_number);

Description of Function

This function return the current port state.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The port state values shown below are defined in MDALIB.H.

CLOSED - The port is currently closed.

INITIALIZED - The port is currently initialized.

OPENED - The port is currently open.

WAITING_FOR_ACK - The API was called with the
cs_write_msg_no_wait and CommServ is waiting for an ACK.

If an error occurs during execution of the function, the global vari-
ables cs_rtn_level and cs_rtn_code are set with an error level and
code, and a value of FF(hex) is returned.

LBI-38835

3-22

cs_get_tx_buffer_count()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_tx_buffer_count (BYTE port_number);

Description of Function

This function returns the number of characters waiting to be trans-
mitted from the Tx buffer. This number includes 18 overhead bytes
for each complete message.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the number of characters waiting in the Tx buff-
er. If an error occurs during execution of the function, the global
variables cs_rtn_level and cs_rtn_code are set with an error level
and code, and a value of FFFF(hex) is returned.

cs_get_tx_count()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_tx_count (BYTE port_number);

Description of Function

This function returns the number of messages successfully transmit-
ted since the port was opened, or since the last call to reset statistics
[cs_reset_msg_stats()].

LBI-38835

3-23

cs_get_tx_buffer_count()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_tx_buffer_count (BYTE port_number);

Description of Function

This function returns the number of characters waiting to be trans-
mitted from the Tx buffer. This number includes 18 overhead bytes
for each complete message.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the number of characters waiting in the Tx buff-
er. If an error occurs during execution of the function, the global
variables cs_rtn_level and cs_rtn_code are set with an error level
and code, and a value of FFFF(hex) is returned.

cs_get_tx_count()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_tx_count (BYTE port_number);

Description of Function

This function returns the number of messages successfully transmit-
ted since the port was opened, or since the last call to reset statistics
[cs_reset_msg_stats()].

LBI-38835

3-23

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the accumulated number of messages transmit-
ted. If an error occurs during execution of the function, the global
variables cs_rtn_level and cs_rtn_code are set with an error level
and code, and a value of FFFF(hex) is returned.

cs_get_tx_errors()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_tx_errors (BYTE port_number);

Description of Function

This function returns the number of failed message transmissions
that have occurred since the port was opened, or since the last call
to reset statistics [cs_reset_msg_stats()].

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the accumulated number of transmission fail-
ures. If an error occurs during execution of the function, the global
variables cs_rtn_level and cs_rtn_code are set with an error level
and code, and a value of FFFF(hex) is returned.

LBI-38835

3-24

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the accumulated number of messages transmit-
ted. If an error occurs during execution of the function, the global
variables cs_rtn_level and cs_rtn_code are set with an error level
and code, and a value of FFFF(hex) is returned.

cs_get_tx_errors()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_tx_errors (BYTE port_number);

Description of Function

This function returns the number of failed message transmissions
that have occurred since the port was opened, or since the last call
to reset statistics [cs_reset_msg_stats()].

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the accumulated number of transmission fail-
ures. If an error occurs during execution of the function, the global
variables cs_rtn_level and cs_rtn_code are set with an error level
and code, and a value of FFFF(hex) is returned.

LBI-38835

3-24

cs_get_tx_retries()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_tx_retries (BYTE port_number);

Description of Function

This function returns the number of attempts to transmit a message
since the port was opened, or since the last call to reset statistics
[cs_reset_msg_stats()]. This number is the sum of all successful
and unsuccessful attempts.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the accumulated number of transmission at-
tempts. If an error occurs during execution of the function, the
global variables cs_rtn_level and cs_rtn_code are set with an error
level and code, and a value of FFFF(hex) is returned.

cs_get_vector_number()

Syntax of Function

#include "mdalib.h"
BYTE far cs_get_vector_number (void);

Description of Function

This function determines if CommServ is loaded into memory as a
TSR program, and if it is, returns the interrupt vector for the pro-
gram.

LBI-38835

3-25

cs_get_tx_retries()

Syntax of Function

#include "mdalib.h"
WORD far cs_get_tx_retries (BYTE port_number);

Description of Function

This function returns the number of attempts to transmit a message
since the port was opened, or since the last call to reset statistics
[cs_reset_msg_stats()]. This number is the sum of all successful
and unsuccessful attempts.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is the accumulated number of transmission at-
tempts. If an error occurs during execution of the function, the
global variables cs_rtn_level and cs_rtn_code are set with an error
level and code, and a value of FFFF(hex) is returned.

cs_get_vector_number()

Syntax of Function

#include "mdalib.h"
BYTE far cs_get_vector_number (void);

Description of Function

This function determines if CommServ is loaded into memory as a
TSR program, and if it is, returns the interrupt vector for the pro-
gram.

LBI-38835

3-25

When CommServ is loaded into memory the interrupt vector num-
ber is specified as an argument on the DOS command line.
CommServ defaults to interrupt 60(hex). Valid interrupt vectors for
CommServ are 60(hex) through 67(hex).

Description of Parameters

None

Return Values

The return value is the interrupt vector for CommServ. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and a value of FF(hex) is returned.

cs_init()

Syntax of Function

#include "mdalib.h"
int far cs_init (BYTE port_number);

Description of Function

The port indicated is initialized with the current port parameters.
Original port parameters are set with cs_set commands. cs_set_des-
tination_id() must be called before the port can be initialized. All
other port parameters have acceptable default values. A port must
be initialized before it can be opened.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is a zero if the operation was successful. If an er-
ror occurs during execution of the function, the global variables

LBI-38835

3-26

When CommServ is loaded into memory the interrupt vector num-
ber is specified as an argument on the DOS command line.
CommServ defaults to interrupt 60(hex). Valid interrupt vectors for
CommServ are 60(hex) through 67(hex).

Description of Parameters

None

Return Values

The return value is the interrupt vector for CommServ. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and a value of FF(hex) is returned.

cs_init()

Syntax of Function

#include "mdalib.h"
int far cs_init (BYTE port_number);

Description of Function

The port indicated is initialized with the current port parameters.
Original port parameters are set with cs_set commands. cs_set_des-
tination_id() must be called before the port can be initialized. All
other port parameters have acceptable default values. A port must
be initialized before it can be opened.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is a zero if the operation was successful. If an er-
ror occurs during execution of the function, the global variables

LBI-38835

3-26

cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_init_data_groups()

Syntax of Function

#include "mdalib.h"
int far cs_init_data_groups (BYTE port_number,
 int far *gids,
 WORD far *actual_count);

Description of Function

This function is used to send a Data Group Initialization message to
an EDACS mobile radio. The Data Group Initialization message
programs the radio to accept group data calls directed to the speci-
fied Group IDs. The message is not transmitted over the air by the
radio. If the radio has not been programmed with a Data Group In-
itialization message it can only receive group data messages di-
rected to Group 0. The radio stores the data groups in non-volitle
memory, so the programming only has to be done once unless a
change is required.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

gids is a far pointer to an array of integers that are valid Group ID
numbers. The value of each integer must be in the range 0 to 2047.
The array may contain up to 16 IDs terminated with a zero. Non-
zero values following the first zero in the array are ignored.

LBI-38835

3-27

cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_init_data_groups()

Syntax of Function

#include "mdalib.h"
int far cs_init_data_groups (BYTE port_number,
 int far *gids,
 WORD far *actual_count);

Description of Function

This function is used to send a Data Group Initialization message to
an EDACS mobile radio. The Data Group Initialization message
programs the radio to accept group data calls directed to the speci-
fied Group IDs. The message is not transmitted over the air by the
radio. If the radio has not been programmed with a Data Group In-
itialization message it can only receive group data messages di-
rected to Group 0. The radio stores the data groups in non-volitle
memory, so the programming only has to be done once unless a
change is required.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

gids is a far pointer to an array of integers that are valid Group ID
numbers. The value of each integer must be in the range 0 to 2047.
The array may contain up to 16 IDs terminated with a zero. Non-
zero values following the first zero in the array are ignored.

LBI-38835

3-27

Return Values

actual_count contains the number of bytes transferred to the Tx
buffer, and should always be 33. The function returns a value of
zero if successful. If an error occurs during execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and the function returns the value of
cs_rtn_level.

cs_init_trace()

Syntax of Function

#include "mdalib.h"
int far cs_init_trace (BYTE port_number);

Description of Function

This function initializes CommServ with the location of the trace
buffers. The port must be initialized using cs_init before using this
call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is a zero is the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-28

Return Values

actual_count contains the number of bytes transferred to the Tx
buffer, and should always be 33. The function returns a value of
zero if successful. If an error occurs during execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and the function returns the value of
cs_rtn_level.

cs_init_trace()

Syntax of Function

#include "mdalib.h"
int far cs_init_trace (BYTE port_number);

Description of Function

This function initializes CommServ with the location of the trace
buffers. The port must be initialized using cs_init before using this
call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is a zero is the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-28

cs_interrupt()

Syntax of Function

#include "mdalib.h"
int far cs_interrupt(DCB far *dcb_ptr);

Description of Function

This function calls CommServ with information provided in the
DCB. The programmer is responsible for setting the entire DCB.
See Chapter 2 Communication Server Program on page .

Description of Parameters

The dcb_ptr is a far pointer to a DCB set up by the programmer.

Return Values

The return value is a zero is the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_is_installed()

Syntax of Function

#include "mdalib.h"
BOOL far cs_is_installed (void);

Description of Function

This function determines if CommServ is loaded into memory as a
TSR program.

Description of Parameters

None

LBI-38835

3-29

cs_interrupt()

Syntax of Function

#include "mdalib.h"
int far cs_interrupt(DCB far *dcb_ptr);

Description of Function

This function calls CommServ with information provided in the
DCB. The programmer is responsible for setting the entire DCB.
See Chapter 2 Communication Server Program on page .

Description of Parameters

The dcb_ptr is a far pointer to a DCB set up by the programmer.

Return Values

The return value is a zero is the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_is_installed()

Syntax of Function

#include "mdalib.h"
BOOL far cs_is_installed (void);

Description of Function

This function determines if CommServ is loaded into memory as a
TSR program.

Description of Parameters

None

LBI-38835

3-29

Return Values

The return value is TRUE (1) if CommServ is installed. If
CommServ is not installed the global variables cs_rtn_level is set
to INVALID_CALL, cs_rtn_code is set to LB_NO_CS_PRE-
SENT, and the return value is FALSE (0).

cs_open_rf()

Syntax of Function

#include "mdalib.h"
int far cs_open_rf (BYTE port_number);

Description of Function

The port indicated is opened and the radio data interface is put on-
line. cs_set_destination_id() and cs_init() must be called before
this function is called.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is a zero if the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_read_addr_msg()

Syntax of Function

#include "mdalib.h"
int far cs_read_addr_msg (BYTE port_number,

LBI-38835

3-30

Return Values

The return value is TRUE (1) if CommServ is installed. If
CommServ is not installed the global variables cs_rtn_level is set
to INVALID_CALL, cs_rtn_code is set to LB_NO_CS_PRE-
SENT, and the return value is FALSE (0).

cs_open_rf()

Syntax of Function

#include "mdalib.h"
int far cs_open_rf (BYTE port_number);

Description of Function

The port indicated is opened and the radio data interface is put on-
line. cs_set_destination_id() and cs_init() must be called before
this function is called.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is a zero if the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_read_addr_msg()

Syntax of Function

#include "mdalib.h"
int far cs_read_addr_msg (BYTE port_number,

LBI-38835

3-30

 BYTE far *type,
 WORD far *id,
 void far * buffer,
 WORD buffer_size,
 WORD far *actual_count);

Description of Function

A message, if available, up to the buffer_size number of characters
is read from the RX buffer of the port indicated, and copied to the
memory pointed to by buffer.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the buffer for receiving the data.

buffer_size is the size of the data buffer. Since the application does
not know how large the message is, the buffer must be larg enough
to hold the largest expected message. The message may range in
size from 1 to 512 bytes.

Return Values

type indicates the ID type of the call originator. This value should
always be IS_LID (2). id indicates the individual logical ID (LID)
of the call originator. actual_count indicates the actual number of
bytes copied from the RX buffer. The function value is zero if the
operation was successful. If an error occurs during execution of the
function the global variables cs_rtn_level and cs_rtn_code are set
with an error level and code, and the function returns cs_rtn_level.

A return level of SOFT_ERROR and a return code of NO_MES-
SAGES indicates that the RX buffer contains no complete mes-
sages, but does not imply an error in the operation of CommServ.

LBI-38835

3-31

 BYTE far *type,
 WORD far *id,
 void far * buffer,
 WORD buffer_size,
 WORD far *actual_count);

Description of Function

A message, if available, up to the buffer_size number of characters
is read from the RX buffer of the port indicated, and copied to the
memory pointed to by buffer.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the buffer for receiving the data.

buffer_size is the size of the data buffer. Since the application does
not know how large the message is, the buffer must be larg enough
to hold the largest expected message. The message may range in
size from 1 to 512 bytes.

Return Values

type indicates the ID type of the call originator. This value should
always be IS_LID (2). id indicates the individual logical ID (LID)
of the call originator. actual_count indicates the actual number of
bytes copied from the RX buffer. The function value is zero if the
operation was successful. If an error occurs during execution of the
function the global variables cs_rtn_level and cs_rtn_code are set
with an error level and code, and the function returns cs_rtn_level.

A return level of SOFT_ERROR and a return code of NO_MES-
SAGES indicates that the RX buffer contains no complete mes-
sages, but does not imply an error in the operation of CommServ.

LBI-38835

3-31

cs_read_msg()

Syntax of Function

#include "mdalib.h"
int far cs_read_msg (BYTE port_number,
 void far *buffer,
 WORD buffer_size,
 WORD far *actual_count);

Description of Function

A message, if available, up to the buffer_size number of characters
is read from the Rx buffer of the port indicated, and copied to mem-
ory pointed to by buffer .

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the data buffer for receiving the data. buff-
er_size is the size of the data buffer to receive the message. Since
the application does not know how large the message is, the buffer
must be big enough to hold the largest expected message. The mes-
sage may range in size from 1 to 512 bytes.

Return Values

actual_count indicates the actual number of bytes copied from the
Rx buffer. The return value is zero if the operation was successful.
If an error occurs during execution of the function, the global vari-
ables cs_rtn_level and cs_rtn_code are set with an error level and
code, and the function returns the value of cs_rtn_level.

A return level of SOFT_ERROR and return code of NO_MES-
SAGES indicates that the Rx buffer was empty, but does not imply
an error in the operation of CommServ.

LBI-38835

3-32

cs_read_msg()

Syntax of Function

#include "mdalib.h"
int far cs_read_msg (BYTE port_number,
 void far *buffer,
 WORD buffer_size,
 WORD far *actual_count);

Description of Function

A message, if available, up to the buffer_size number of characters
is read from the Rx buffer of the port indicated, and copied to mem-
ory pointed to by buffer .

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the data buffer for receiving the data. buff -
er_size is the size of the data buffer to receive the message. Since
the application does not know how large the message is, the buffer
must be big enough to hold the largest expected message. The mes-
sage may range in size from 1 to 512 bytes.

Return Values

actual_count indicates the actual number of bytes copied from the
Rx buffer. The return value is zero if the operation was successful.
If an error occurs during execution of the function, the global vari-
ables cs_rtn_level and cs_rtn_code are set with an error level and
code, and the function returns the value of cs_rtn_level.

A return level of SOFT_ERROR and return code of NO_MES-
SAGES indicates that the Rx buffer was empty, but does not imply
an error in the operation of CommServ.

LBI-38835

3-32

cs_remove()

Syntax of Function

#include "mdalib.h"
int far cs_remove (void);

Description of Function

CommServ closes all open ports and removes itself from memory.

Description of Parameters

None

Return Values

The return value is a zero is the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_reset_msg_stats()

Syntax of Function

#include "mdalib.h"
int far cs_reset_msg_stats (BYTE port_number);

Description of Function

The statistics for the port indicated are reset to zero. See
cs_get_rx_count(), cs_get_rx_errors(), cs_get_tx_count(),
cs_get_tx_errors(), and cs_get_tx_retries().

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-33

cs_remove()

Syntax of Function

#include "mdalib.h"
int far cs_remove (void);

Description of Function

CommServ closes all open ports and removes itself from memory.

Description of Parameters

None

Return Values

The return value is a zero is the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_reset_msg_stats()

Syntax of Function

#include "mdalib.h"
int far cs_reset_msg_stats (BYTE port_number);

Description of Function

The statistics for the port indicated are reset to zero. See
cs_get_rx_count(), cs_get_rx_errors(), cs_get_tx_count(),
cs_get_tx_errors(), and cs_get_tx_retries().

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-33

Return Values

The return value is a zero if the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_reset_status()

Syntax of Function

#include "mdalib.h"
int far cs_reset_status (BYTE port_number);

Description of Function

The modem_status and line_status for the port indicated are reset to
zero. The Rx buffer overflow flag is reset to FALSE (0).

cs_read calls return detected line errors. The status must be reset so
that future cs_reads do not return the same error.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is a zero if the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-34

Return Values

The return value is a zero if the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_reset_status()

Syntax of Function

#include "mdalib.h"
int far cs_reset_status (BYTE port_number);

Description of Function

The modem_status and line_status for the port indicated are reset to
zero. The Rx buffer overflow flag is reset to FALSE (0).

cs_read calls return detected line errors. The status must be reset so
that future cs_reads do not return the same error.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is a zero if the operation was successful. If an er-
ror occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-34

cs_rx_trace_read()

Syntax of Function

#include "mdalib.h"
int far cs_rx_trace_read (BYTE port_number,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

Characters are read from the Rx trace buffer and are copied to a
memory location pointed to by buffer . Up to the buffer_count of
characters are transferred. The Rx trace buffer must be read before
the buffer overflows or the oldest data is lost.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the area to receive the Rx trace data. buff-
er_count is the number of bytes requested from the Rx trace buffer.
buffer_count must be in the range of 1 to rx_trace_size.

Return Values

The actual_count field indicates the actual number of bytes copied
from the Rx trace buffer. The function returns a zero if the opera-
tion was successful. If an error occurs during execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and the function returns the value of
cs_rtn_level.

LBI-38835

3-35

cs_rx_trace_read()

Syntax of Function

#include "mdalib.h"
int far cs_rx_trace_read (BYTE port_number,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

Characters are read from the Rx trace buffer and are copied to a
memory location pointed to by buffer . Up to the buffer_count of
characters are transferred. The Rx trace buffer must be read before
the buffer overflows or the oldest data is lost.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the area to receive the Rx trace data. buff -
er_count is the number of bytes requested from the Rx trace buffer.
buffer_count must be in the range of 1 to rx_trace_size.

Return Values

The actual_count field indicates the actual number of bytes copied
from the Rx trace buffer. The function returns a zero if the opera-
tion was successful. If an error occurs during execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and the function returns the value of
cs_rtn_level.

LBI-38835

3-35

cs_set_defaults()

Syntax of Function

#include "mdalib.h"
int far cs_set_defaults (BYTE port_number);

Description of Function

This function returns the designated port to the default (CommServ
load time) port parameter setting. The port must be closed when
this command is executed. After issuing this call, cs_set_destina-
tion_id() must be called before the port can be initialized or opened.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_set_destination_id()

Syntax of Function

#include "mdalib.h"
int far cs_set_destination_id (BYTE port_number,
 WORD id,
 BYTE type_flag);

Description of Function

This function changes the designated port’s destination id. This is
the individual or group id of the radio or host designated to receive

LBI-38835

3-36

cs_set_defaults()

Syntax of Function

#include "mdalib.h"
int far cs_set_defaults (BYTE port_number);

Description of Function

This function returns the designated port to the default (CommServ
load time) port parameter setting. The port must be closed when
this command is executed. After issuing this call, cs_set_destina-
tion_id() must be called before the port can be initialized or opened.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_set_destination_id()

Syntax of Function

#include "mdalib.h"
int far cs_set_destination_id (BYTE port_number,
 WORD id,
 BYTE type_flag);

Description of Function

This function changes the designated port’s destination id. This is
the individual or group id of the radio or host designated to receive

LBI-38835

3-36

messages by default when the cs_write_message commands are
used. When the cs_write_addr_msg commands are used, this desti-
nation id is overridden.

NOTE: This function must be called before any other cs_set func-
tion, cs_init, or cs_open_rf can be used.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The id is either a group id (GID) or an individual or host id (LID)
used as the destination id for the radio data interface. The type_flag
must be IS_GID if id is a group id, or IS_LID if id is an individual
or host id. The valid range for group IDs is 0-2047. The valid
range for individual IDs is 1-16382. Host IDs must be in the range
1-64, however, no error is detected for a host ID in the range 65-
16382. CommServ defaults the id to 0000, two bytes of null.

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-37

messages by default when the cs_write_message commands are
used. When the cs_write_addr_msg commands are used, this desti-
nation id is overridden.

NOTE: This function must be called before any other cs_set func-
tion, cs_init, or cs_open_rf can be used.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The id is either a group id (GID) or an individual or host id (LID)
used as the destination id for the radio data interface. The type_flag
must be IS_GID if id is a group id, or IS_LID if id is an individual
or host id. The valid range for group IDs is 0-2047. The valid
range for individual IDs is 1-16382. Host IDs must be in the range
1-64, however, no error is detected for a host ID in the range 65-
16382. CommServ defaults the id to 0000, two bytes of null.

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-37

cs_set_open_timeout()

Syntax of Function

#include "mdalib.h"
int far cs_set_open_timeout (BYTE port_number,
 WORD open_timeout);

Description of Function

This function presets the designated port’s open_timeout value for
subsequent cs_open calls. If this function is not called, the default
value for open timeout is 182 ticks or 10 seconds.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The open_timeout value specifies the maximum length of time to
wait for a command to be completed, and can be from 20 to 65535
ticks. Time is in units of system timer ticks and the default value is
182 ticks (10 seconds). A value of zero disables the timeout func-
tion. With a open_timeout value of 0, if a cs_open cannot be com-
pleted and does not generate an error, the system may "hang," and
have to be restarted.

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-38

cs_set_open_timeout()

Syntax of Function

#include "mdalib.h"
int far cs_set_open_timeout (BYTE port_number,
 WORD open_timeout);

Description of Function

This function presets the designated port’s open_timeout value for
subsequent cs_open calls. If this function is not called, the default
value for open timeout is 182 ticks or 10 seconds.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The open_timeout value specifies the maximum length of time to
wait for a command to be completed, and can be from 20 to 65535
ticks. Time is in units of system timer ticks and the default value is
182 ticks (10 seconds). A value of zero disables the timeout func-
tion. With a open_timeout value of 0, if a cs_open cannot be com-
pleted and does not generate an error, the system may "hang," and
have to be restarted.

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-38

cs_set_rx_buffer_size()

Syntax of Function

#include "mdalib.h"
int far cs_set_rx_buffer_size (BYTE port_number,
 WORD new_rx_buffer_size);

Description of Function

This function changes the designated port’s rx_buffer_size to the de-
sired setting. The port must be closed when this command is issued.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The new_rx_buffer_size is the size for the rx_buffer that is allo-
cated during a cs_init call. CommServ defaults all ports to 6000.
The tx_buffer_size and the rx_buffer_size must be 531 bytes or
more and fit into the buffer pool. Buffer pool is set with a com-
mand line parameter when CommServ is loaded.

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-39

cs_set_rx_buffer_size()

Syntax of Function

#include "mdalib.h"
int far cs_set_rx_buffer_size (BYTE port_number,
 WORD new_rx_buffer_size);

Description of Function

This function changes the designated port’s rx_buffer_size to the de-
sired setting. The port must be closed when this command is issued.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The new_rx_buffer_size is the size for the rx_buffer that is allo-
cated during a cs_init call. CommServ defaults all ports to 6000.
The tx_buffer_size and the rx_buffer_size must be 531 bytes or
more and fit into the buffer pool. Buffer pool is set with a com-
mand line parameter when CommServ is loaded.

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-39

cs_set_tx_buffer_size()

Syntax of Function

#include "mdalib.h"
int far cs_set_tx_buffer_size (BYTE port_number,
 WORD new_tx_buffer_size);

Description of Function

This function changes the designated port’s tx_buffer_size to the
desired setting. The port must be closed when this command is is-
sued.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

new_tx_buffer_size is the size for the tx_buffer that is allocated
during a cs_init call. CommServ defaults all ports to 3000. The
tx_buffer_size and the rx_buffer_size must be 531 bytes or more
and fit into the buffer pool. Buffer pool is set with a command line
parameter when CommServ is loaded.

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-40

cs_set_tx_buffer_size()

Syntax of Function

#include "mdalib.h"
int far cs_set_tx_buffer_size (BYTE port_number,
 WORD new_tx_buffer_size);

Description of Function

This function changes the designated port’s tx_buffer_size to the
desired setting. The port must be closed when this command is is-
sued.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

new_tx_buffer_size is the size for the tx_buffer that is allocated
during a cs_init call. CommServ defaults all ports to 3000. The
tx_buffer_size and the rx_buffer_size must be 531 bytes or more
and fit into the buffer pool. Buffer pool is set with a command line
parameter when CommServ is loaded.

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-40

cs_set_write_timeout()

Syntax of Function

#include "mdalib.h"
int far cs_set_write_timeout (BYTE port_number,
 WORD write_timeout);

Description of Function

This function presets the designated port’s write_timeout value for
subsequent cs_write calls. If this function is not called, the default
value of 182 ticks, or 10 seconds, is used.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The write_timeout value represents the maximum length of time to
wait for the command to be completed, and can be from 55 to
65535. Time is in units of system timer ticks. The minimum
write_timeout value depends on the message length for a particular
cs_write() call. A write_timeout value of at least 182 ticks (10 sec-
onds) is recommended. This is the default value.

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-41

cs_set_write_timeout()

Syntax of Function

#include "mdalib.h"
int far cs_set_write_timeout (BYTE port_number,
 WORD write_timeout);

Description of Function

This function presets the designated port’s write_timeout value for
subsequent cs_write calls. If this function is not called, the default
value of 182 ticks, or 10 seconds, is used.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The write_timeout value represents the maximum length of time to
wait for the command to be completed, and can be from 55 to
65535. Time is in units of system timer ticks. The minimum
write_timeout value depends on the message length for a particular
cs_write() call. A write_timeout value of at least 182 ticks (10 sec-
onds) is recommended. This is the default value.

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-41

cs_start_trace()

Syntax of Function

#include "mdalib.h"
int far cs_start_trace (BYTE port_number);

Description of Function

This function enables the trace facility. CommServ starts tracing
each cs_read and cs_write command performed on the specified
port. During a cs_read or cs_write command, every character that
comes in (or goes out) the indicated port is copied to the appropriate
trace buffer. The port must be initialized with the cs_init() call, and
the trace function must be initialized with the cs_init_trace() call,
when this command is executed.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-42

cs_start_trace()

Syntax of Function

#include "mdalib.h"
int far cs_start_trace (BYTE port_number);

Description of Function

This function enables the trace facility. CommServ starts tracing
each cs_read and cs_write command performed on the specified
port. During a cs_read or cs_write command, every character that
comes in (or goes out) the indicated port is copied to the appropriate
trace buffer. The port must be initialized with the cs_init() call, and
the trace function must be initialized with the cs_init_trace() call,
when this command is executed.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

LBI-38835

3-42

cs_stop_trace()

Syntax of Function

#include "mdalib.h"
int cs_stop_trace (BYTE port_number);

Description of Function

This function disables the trace facility. CommServ stops tracing
cs_read and cs_write commands on the designated port.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_tx_trace_read()

Syntax of Function

#include "mdalib.h"
int far cs_tx_trace_read (BYTE port_number,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

LBI-38835

3-43

cs_stop_trace()

Syntax of Function

#include "mdalib.h"
int cs_stop_trace (BYTE port_number);

Description of Function

This function disables the trace facility. CommServ stops tracing
cs_read and cs_write commands on the designated port.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is zero if the operation was successful. If an error
occurs during execution of the function, the global variables
cs_rtn_level and cs_rtn_code are set with an error level and code,
and the function returns the value of cs_rtn_level.

cs_tx_trace_read()

Syntax of Function

#include "mdalib.h"
int far cs_tx_trace_read (BYTE port_number,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

LBI-38835

3-43

Description of Function

Characters are read from the Tx buffer and are copied to a memory
location designated by buffer. The number of characters trans-
ferred is designated by buffer_count. Data must be removed from
the Tx trace buffer before the buffer overflows or the oldest data is
lost.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the data area to receive Tx trace data. buff-
er_count is the number of bytes requested from the Tx trace buffer.
It must be in the range of 1 to tx_trace_size.

Return Values

The actual_count field indicates the actual number of bytes copied
from the Tx trace buffer. actual_count can be less than buff-
er_count if an error occurs. The function returns a zero if the opera-
tion was successful. If an error occurs during execution of the
function, the global variables cs_rtn_level and cs_rtn_code are set
with an error level and code, and the function returns the value of
cs_rtn_level.

cs_write_addr_msg_ignore_ack()

Syntax of Function

#include "mdalib.h"
int far cs_write_addr_msg_ignore_ack(
 BYTE port_number,
 BYTE type,
 WORD id,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

LBI-38835

3-44

Description of Function

Characters are read from the Tx buffer and are copied to a memory
location designated by buffer. The number of characters trans-
ferred is designated by buffer_count. Data must be removed from
the Tx trace buffer before the buffer overflows or the oldest data is
lost.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the data area to receive Tx trace data. buff -
er_count is the number of bytes requested from the Tx trace buffer.
It must be in the range of 1 to tx_trace_size.

Return Values

The actual_count field indicates the actual number of bytes copied
from the Tx trace buffer. actual_count can be less than buff -
er_count if an error occurs. The function returns a zero if the opera-
tion was successful. If an error occurs during execution of the
function, the global variables cs_rtn_level and cs_rtn_code are set
with an error level and code, and the function returns the value of
cs_rtn_level.

cs_write_addr_msg_ignore_ack()

Syntax of Function

#include "mdalib.h"
int far cs_write_addr_msg_ignore_ack(
 BYTE port_number,
 BYTE type,
 WORD id,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

LBI-38835

3-44

Description of Function

A number of characters, buffer_count, pointed to by buffer , are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, and type and id are used to spec-
ify the message destination. If there is not enough room in the Tx
buffer for the message plus overhead, the function waits for the pe-
riod specified by write_timeout. Once the message is in the buffer,
the function returns immediately. Any subsequent ACK/NAK re-
sponse is ignored.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The type parameter indicates whether the destination id is a group
id (GID) or an individual or host id (LID). This parameter must
have a value of IS_GID or IS_LID.

The id parameter is the message destination ID. If type = IS_GID,
the id must be from 0 to 2047. If type = IS_LID, the id must be
from 1 to 16382. The buffer parameter is a far pointer to the data
buffer containing the message to be transmitted.

buffer_count is the number of bytes to be transmitted, and must be
from 1 to 2000 bytes.

Return Values

actual_count is the actual number of bytes copied to the Tx buffer,
excluding the RDI protocol header. actual_count may be less than
buffer_count if an error occurs. The return value is zero if the op-
eration was successful. If an error occurs during execution of the
function, the global variables cs_rtn_level and cs_rtn_code are set
with an error level and code, and the function returns the value of
cs_rtn_level.

LBI-38835

3-45

Description of Function

A number of characters, buffer_count, pointed to by buffer , are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, and type and id are used to spec-
ify the message destination. If there is not enough room in the Tx
buffer for the message plus overhead, the function waits for the pe-
riod specified by write_timeout. Once the message is in the buffer,
the function returns immediately. Any subsequent ACK/NAK re-
sponse is ignored.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The type parameter indicates whether the destination id is a group
id (GID) or an individual or host id (LID). This parameter must
have a value of IS_GID or IS_LID.

The id parameter is the message destination ID. If type = IS_GID,
the id must be from 0 to 2047. If type = IS_LID, the id must be
from 1 to 16382. The buffer parameter is a far pointer to the data
buffer containing the message to be transmitted.

buffer_count is the number of bytes to be transmitted, and must be
from 1 to 2000 bytes.

Return Values

actual_count is the actual number of bytes copied to the Tx buffer,
excluding the RDI protocol header. actual_count may be less than
buffer_count if an error occurs. The return value is zero if the op-
eration was successful. If an error occurs during execution of the
function, the global variables cs_rtn_level and cs_rtn_code are set
with an error level and code, and the function returns the value of
cs_rtn_level.

LBI-38835

3-45

cs_write_addr_msg_no_wait()

Syntax of Function

#include "mdalib.h"
int far cs_write_addr_msg_no_wait(
 BYTE port_number,
 BYTE type,
 WORD id,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

A number of characters, buffer_count, pointed to by buffer , are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, and type and id are used to spec-
ify the message destination. If there is not enough room in the Tx
buffer for the message plus overhead, the function waits for the pe-
riod specified by write_timeout. Once the message is in the buffer,
the function returns immediately, but CommServ remains in the
WAITING_FOR_ACK state. No further write commands are ac-
cepted until the ACK/NAK response is received.

The cs_write_msg_ack_status call must be used next (or repeat-
edly) to determine when this call completes.
cs_write_msg_no_wait starts the timeout interval that remains ac-
tive through subsequent cs_write_msg_ack_status calls. Future
calls with cs_write_msg_ack_status return a busy state until this
call is completed successfully, with an error, or the timeout has ex-
pired. See the cs_set_write_timeout function call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-46

cs_write_addr_msg_no_wait()

Syntax of Function

#include "mdalib.h"
int far cs_write_addr_msg_no_wait(
 BYTE port_number,
 BYTE type,
 WORD id,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

A number of characters, buffer_count, pointed to by buffer , are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, and type and id are used to spec-
ify the message destination. If there is not enough room in the Tx
buffer for the message plus overhead, the function waits for the pe-
riod specified by write_timeout. Once the message is in the buffer,
the function returns immediately, but CommServ remains in the
WAITING_FOR_ACK state. No further write commands are ac-
cepted until the ACK/NAK response is received.

The cs_write_msg_ack_status call must be used next (or repeat-
edly) to determine when this call completes.
cs_write_msg_no_wait starts the timeout interval that remains ac-
tive through subsequent cs_write_msg_ack_status calls. Future
calls with cs_write_msg_ack_status return a busy state until this
call is completed successfully, with an error, or the timeout has ex-
pired. See the cs_set_write_timeout function call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

LBI-38835

3-46

The type parameter indicates whether the destination id is a group
id (GID) or an individual or host id (LID). This parameter must
have a value of IS_GID or IS_LID.

The id parameter is the message destination ID. If type = IS_GID,
the id must be from 0 to 2047. If type = IS_LID, the id must be
from 1 to 16382. The buffer parameter is a far pointer to the data
buffer containing the message to be transmitted.

buffer_count is the number of bytes to be transmitted, and must be
from 1 to 2000 bytes.

Return Values

actual_count is the actual number of bytes copied into the Tx buff-
er excluding the RDI protocol header. actual_count could be less
than buffer_count if an error occurs. The return value is 1,
CMD_ACCEPT, if the operation was accepted. If an error occurs
during execution of the function, the global variables cs_rtn_level
and cs_rtn_code are set with an error level and code, and the func-
tion returns the value of cs_rtn_level.

LBI-38835

3-47

The type parameter indicates whether the destination id is a group
id (GID) or an individual or host id (LID). This parameter must
have a value of IS_GID or IS_LID.

The id parameter is the message destination ID. If type = IS_GID,
the id must be from 0 to 2047. If type = IS_LID, the id must be
from 1 to 16382. The buffer parameter is a far pointer to the data
buffer containing the message to be transmitted.

buffer_count is the number of bytes to be transmitted, and must be
from 1 to 2000 bytes.

Return Values

actual_count is the actual number of bytes copied into the Tx buff-
er excluding the RDI protocol header. actual_count could be less
than buffer_count if an error occurs. The return value is 1,
CMD_ACCEPT, if the operation was accepted. If an error occurs
during execution of the function, the global variables cs_rtn_level
and cs_rtn_code are set with an error level and code, and the func-
tion returns the value of cs_rtn_level.

LBI-38835

3-47

cs_write_addr_msg_wait_ack()

Syntax of Function

#include "mdalib.h"
int far cs_write_addr_msg_wait_ack(
 BYTE port_number,
 BYTE type,
 WORD id,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

A number of characters, buffer_count, pointed to by buffer, are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, and type and id are used to spec-
ify the message destination. If there is not enough room in the Tx
buffer for the message plus overhead, the function waits for the pe-
riod specified by write_timeout. Once the message is in the buffer,
the function waits for an ACK/NAK response before returning to
the function.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The type parameter indicates whether the destination id is a group
id (GID) or an individual or host id (LID). This parameter must
have a value of IS_GID or IS_LID.

The id parameter is the message destination ID. If type = IS_GID,
the id must be from 0 to 2047. If type = IS_LID, the id must be
from 1 to 16382. The buffer parameter is a far pointer to the data
buffer containing the message to be transmitted.

buffer_count is the number of bytes to be transmitted, and must be
from 1 to 2000 bytes.

LBI-38835

3-48

cs_write_addr_msg_wait_ack()

Syntax of Function

#include "mdalib.h"
int far cs_write_addr_msg_wait_ack(
 BYTE port_number,
 BYTE type,
 WORD id,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

A number of characters, buffer_count, pointed to by buffer, are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, and type and id are used to spec-
ify the message destination. If there is not enough room in the Tx
buffer for the message plus overhead, the function waits for the pe-
riod specified by write_timeout. Once the message is in the buffer,
the function waits for an ACK/NAK response before returning to
the function.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

The type parameter indicates whether the destination id is a group
id (GID) or an individual or host id (LID). This parameter must
have a value of IS_GID or IS_LID.

The id parameter is the message destination ID. If type = IS_GID,
the id must be from 0 to 2047. If type = IS_LID, the id must be
from 1 to 16382. The buffer parameter is a far pointer to the data
buffer containing the message to be transmitted.

buffer_count is the number of bytes to be transmitted, and must be
from 1 to 2000 bytes.

LBI-38835

3-48

Return Values

actual_count is the actual number of bytes copied to the Tx buffer,
excluding the RDI protocol header. actual_count may be less than
buffer count if an error occurs. The return value is zero if the opera-
tion was successful. If an error occurs during execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and the function returns the value of
cs_rtn_level.

cs_write_msg_ack_status()

Syntax of Function

#include "mdalib.h"
int far cs_write_msg_ack_status (
 BYTE port_number);

Description of Function

This call must be used after the cs_write_addr_msg_no_wait call to
see how it concluded. Only cs_get and cs_read calls are allowed
until the previous no_wait command finishes either successfully or
in error.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is 2, DEV_BUSY, if the operation is still pending.
The return value is 0 if the ACK was received. If an error occurs
during execution of the function, the global variables cs_rtn_level
and cs_rtn_code are set with an error level and code, and the func-
tion returns the value of cs_rtn_level.

LBI-38835

3-49

Return Values

actual_count is the actual number of bytes copied to the Tx buffer,
excluding the RDI protocol header. actual_count may be less than
buffer count if an error occurs. The return value is zero if the opera-
tion was successful. If an error occurs during execution of the func-
tion, the global variables cs_rtn_level and cs_rtn_code are set with
an error level and code, and the function returns the value of
cs_rtn_level.

cs_write_msg_ack_status()

Syntax of Function

#include "mdalib.h"
int far cs_write_msg_ack_status (
 BYTE port_number);

Description of Function

This call must be used after the cs_write_addr_msg_no_wait call to
see how it concluded. Only cs_get and cs_read calls are allowed
until the previous no_wait command finishes either successfully or
in error.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

Return Values

The return value is 2, DEV_BUSY, if the operation is still pending.
The return value is 0 if the ACK was received. If an error occurs
during execution of the function, the global variables cs_rtn_level
and cs_rtn_code are set with an error level and code, and the func-
tion returns the value of cs_rtn_level.

LBI-38835

3-49

cs_write_msg_ignore_ack()

Syntax of Function

#include "mdalib.h"
int far cs_write_msg_ignore_ack(
 BYTE port_number,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

A number of characters, buffer_count, pointed to by buffer, are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, and the default destination ID is
used to specify the message destination (see cs_set_destination_id).
If there is not enough room in the Tx buffer for the message plus
overhead, the function waits for the period specified by
write_timeout. Once the message is in the buffer, the function re-
turns immediately. Any subsequent ACK/NAK response is ignored.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the data buffer to be transmitted. buff-
er_count is the number of bytes to be transmitted. It must be in the
range from 1 to 2000.

Return Values

actual_count is the actual number of bytes copied into the Tx buff-
er excluding the RDI protocol header. actual_count could be less
than buffer_count if an error occurs. The return value is zero if the
operation was successful. If an error occurs during execution of the
function, the global variables cs_rtn_level and cs_rtn_code are set
with an error level and code, and the function returns the value of
cs_rtn_level.

LBI-38835

3-50

cs_write_msg_ignore_ack()

Syntax of Function

#include "mdalib.h"
int far cs_write_msg_ignore_ack(
 BYTE port_number,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

A number of characters, buffer_count, pointed to by buffer, are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, and the default destination ID is
used to specify the message destination (see cs_set_destination_id).
If there is not enough room in the Tx buffer for the message plus
overhead, the function waits for the period specified by
write_timeout. Once the message is in the buffer, the function re-
turns immediately. Any subsequent ACK/NAK response is ignored.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the data buffer to be transmitted. buff -
er_count is the number of bytes to be transmitted. It must be in the
range from 1 to 2000.

Return Values

actual_count is the actual number of bytes copied into the Tx buff-
er excluding the RDI protocol header. actual_count could be less
than buffer_count if an error occurs. The return value is zero if the
operation was successful. If an error occurs during execution of the
function, the global variables cs_rtn_level and cs_rtn_code are set
with an error level and code, and the function returns the value of
cs_rtn_level.

LBI-38835

3-50

cs_write_msg_no_wait()

Syntax of Function

#include "mdalib.h"
int far cs_write_msg_no_wait(
 BYTE port_number,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

A number of characters, buffer_count, pointed to by buffer , are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, and the default destination ID is
used to specify the message destination (see cs_set_destination_id).
If there is not enough room in the Tx buffer for the message plus
overhead, the function waits for the period specified by
write_timeout. Once the message is in the buffer, the function re-
turns immediately, but CommServ remains in the WAIT-
ING_FOR_ACK state. No further write commands are accepted
until the ACK/NAK response is received.

The cs_write_msg_ack_status call must be used next (or repeat-
edly) to determine when this call completes.
cs_write_msg_no_wait starts the timeout interval that remains ac-
tive through subsequent cs_write_msg_ack_status calls. Future
calls with cs_write_msg_ack_status return a busy state until this
call is completely successfully, with an error, or the timeout has ex-
pired. See the cs_set_write_timeout function call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the data buffer to be transmitted. buff-
er_count is the number of bytes to be transmitted. It must be in the
range from 1 to 2000.

LBI-38835

3-51

cs_write_msg_no_wait()

Syntax of Function

#include "mdalib.h"
int far cs_write_msg_no_wait(
 BYTE port_number,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

A number of characters, buffer_count, pointed to by buffer , are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, and the default destination ID is
used to specify the message destination (see cs_set_destination_id).
If there is not enough room in the Tx buffer for the message plus
overhead, the function waits for the period specified by
write_timeout. Once the message is in the buffer, the function re-
turns immediately, but CommServ remains in the WAIT-
ING_FOR_ACK state. No further write commands are accepted
until the ACK/NAK response is received.

The cs_write_msg_ack_status call must be used next (or repeat-
edly) to determine when this call completes.
cs_write_msg_no_wait starts the timeout interval that remains ac-
tive through subsequent cs_write_msg_ack_status calls. Future
calls with cs_write_msg_ack_status return a busy state until this
call is completely successfully, with an error, or the timeout has ex-
pired. See the cs_set_write_timeout function call.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the data buffer to be transmitted. buff -
er_count is the number of bytes to be transmitted. It must be in the
range from 1 to 2000.

LBI-38835

3-51

Return Values

actual_count is the actual number of bytes copied into the Tx buff-
er excluding the RDI protocol header. actual_count could be less
than buffer_count if an error occurs. The return value is 1,
CMD_ACCEPT, if the operation was accepted. If an error occurs
during execution of the function, the global variables cs_rtn_level
and cs_rtn_code are set with an error level and code, and the func-
tion returns the value of cs_rtn_level.

cs_write_msg_wait_ack()

Syntax of Function

#include "mdalib.h"
int far cs_write_msg_wait_ack (
 BYTE port_number,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

A number of characters, buffer_count, pointed to by buffer, are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, with the default destination id
used to specify the message destination (see cs_set_destination_id).
If there is not enough room in the Tx buffer for the message plus
overhead, the function waits for the period specified by
write_timeout. Once the message is in the buffer, the function re-
turns immediately. Any subsequent ACK/NAK response is ignored.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the data buffer to be transmitted. The buff-
er_count is the number of bytes to be transmitted. It must be in the
range from 1 to 2000.

LBI-38835

3-52

Return Values

actual_count is the actual number of bytes copied into the Tx buff-
er excluding the RDI protocol header. actual_count could be less
than buffer_count if an error occurs. The return value is 1,
CMD_ACCEPT, if the operation was accepted. If an error occurs
during execution of the function, the global variables cs_rtn_level
and cs_rtn_code are set with an error level and code, and the func-
tion returns the value of cs_rtn_level.

cs_write_msg_wait_ack()

Syntax of Function

#include "mdalib.h"
int far cs_write_msg_wait_ack (
 BYTE port_number,
 void far *buffer,
 WORD buffer_count,
 WORD far *actual_count);

Description of Function

A number of characters, buffer_count, pointed to by buffer, are
written to the Tx buffer of the indicated port. The RDI protocol
header is added to the data stream, with the default destination id
used to specify the message destination (see cs_set_destination_id).
If there is not enough room in the Tx buffer for the message plus
overhead, the function waits for the period specified by
write_timeout. Once the message is in the buffer, the function re-
turns immediately. Any subsequent ACK/NAK response is ignored.

Description of Parameters

port_number indicates the communications port for the function.
Valid port values are COM1 (serial port 0) and COM2 (serial port
1).

buffer is a far pointer to the data buffer to be transmitted. The buff -
er_count is the number of bytes to be transmitted. It must be in the
range from 1 to 2000.

LBI-38835

3-52

Return Values

actual_count indicates the actual number of bytes copied to the Tx
buffer excluding the RDI protocol header. actual_count could be
less than buffer_count if an error occurs. The return value is zero
if the operation was successful. If an error occurs during execution
of the function, the global variables cs_rtn_level and cs_rtn_code
are set with an error level and code, and the function returns the
value of cs_rtn_level.

LBI-38835

3-53

Return Values

actual_count indicates the actual number of bytes copied to the Tx
buffer excluding the RDI protocol header. actual_count could be
less than buffer_count if an error occurs. The return value is zero
if the operation was successful. If an error occurs during execution
of the function, the global variables cs_rtn_level and cs_rtn_code
are set with an error level and code, and the function returns the
value of cs_rtn_level.

LBI-38835

3-53

This page intentionally left blank

LBI-38835

3-54

This page intentionally left blank

LBI-38835

3-54

Appendix A

Return Levels and Return Codes

A-1 Return Levels

Level Symbol/Meaning

0 OP_CMPLT

The command or operation completed successfully.

1 CMD_ACCEPT

The command was expected by CommServ but has not been
completed. Valid only on a WRITE command with subcom-
mand 03.

2 DEV_BUSY

The command was rejected because the device is busy with a
previous operation. This includes waiting for an ACK, or an
attempt to re-enter CommServ.

3 INVALID_CALL

The command received by CM from the application has inva-
lid parameters in the Device Control Block. Some causes for
this are:

• Bad value in the DCB
- Invalid command
- Null pointer
- unsupported baud rate in init structure
- invalid port

A-1

LBI-38835

Appendix A

Return Levels and Return Codes

A-1 Return Levels

Level Symbol/Meaning

0 OP_CMPLT

The command or operation completed successfully.

1 CMD_ACCEPT

The command was expected by CommServ but has not been
completed. Valid only on a WRITE command with subcom-
mand 03.

2 DEV_BUSY

The command was rejected because the device is busy with a
previous operation. This includes waiting for an ACK, or an
attempt to re-enter CommServ.

3 INVALID_CALL

The command received by CM from the application has inva-
lid parameters in the Device Control Block. Some causes for
this are:

• Bad value in the DCB
- Invalid command
- Null pointer
- unsupported baud rate in init structure
- invalid port

A-1

LBI-38835

• Improper call sequence
- Open command issued before an init

 command
- Read or Write issued before an

 Open command

4 SOFT_ERROR

CommServ detected an error that may be corrected with a re-
try.

5 USER_ACTION

CommServ has reported a condition that probably requires op-
erator action to correct.

6 HARD_ERROR

CommServ has reported a hardware malfunction.
• Communications port adapter not

 present
• Radio Data Interface not responding

 to commands

A-2 CommServ Return Codes

The Return Code is the specific exception code number used to de-
tail the Return Level. The application programmer may use these
codes to build an extensive error checking and recovery routine us-
ing the numbers as an index to, (1) an error message file for screen
display of message and instructions, and/or (2) National Language
Support error message displays.

A-2

LBI-38835

• Improper call sequence
- Open command issued before an init

 command
- Read or Write issued before an

 Open command

4 SOFT_ERROR

CommServ detected an error that may be corrected with a re-
try.

5 USER_ACTION

CommServ has reported a condition that probably requires op-
erator action to correct.

6 HARD_ERROR

CommServ has reported a hardware malfunction.
• Communications port adapter not

 present
• Radio Data Interface not responding

 to commands

A-2 CommServ Return Codes

The Return Code is the specific exception code number used to de-
tail the Return Level. The application programmer may use these
codes to build an extensive error checking and recovery routine us-
ing the numbers as an index to, (1) an error message file for screen
display of message and instructions, and/or (2) National Language
Support error message displays.

A-2

LBI-38835

A-2.1 Informational and Error Return Codes

All Return Codes presented by CommServ are positive for informa-
tional codes and negative for error codes. The following is a list of
all codes returned at the completion of a command.

A-2.2 Informational Return Codes

Code Symbol/Meaning

0 CS_SUCCESS

(Return Level = 0)
The command completed successfully.

1 RESERVED

2 NO_MESSAGES

(Return Level = 4)
There are no messages available in the receive buffer.

3 RESERVED

4 UNRECOGNIZED_MESSAGE_DISCARDED

(Return Level = 4)
Data was found in the receive buffer that contained an undeter-
mined format while operating packet mode transfers. The data
did not constitute a valid message packet and was therefore
discarded. Message count is affected.

A-3

LBI-38835

A-2.1 Informational and Error Return Codes

All Return Codes presented by CommServ are positive for informa-
tional codes and negative for error codes. The following is a list of
all codes returned at the completion of a command.

A-2.2 Informational Return Codes

Code Symbol/Meaning

0 CS_SUCCESS

(Return Level = 0)
The command completed successfully.

1 RESERVED

2 NO_MESSAGES

(Return Level = 4)
There are no messages available in the receive buffer.

3 RESERVED

4 UNRECOGNIZED_MESSAGE_DISCARDED

(Return Level = 4)
Data was found in the receive buffer that contained an undeter-
mined format while operating packet mode transfers. The data
did not constitute a valid message packet and was therefore
discarded. Message count is affected.

A-3

LBI-38835

A-2.3 DCB Error Return Codes
(Return Level = 3)

Code Symbol/Meaning

-1 DCB_INV_PORT

The command is directed to an invalid port. The valid range
is 0 or 1.

-2 DCB_INV_XFR_TYPE

The selected transfer type is invalid for this command. Valid
transfer types are MSG_MODE (2) and ADDR_MSG_MODE
(10).

-3 DCB_INV_COMMAND

The command is invalid. The valid range is 1 to 6.

-4 DCB_INV_SUB_COMMAND

The subcommand selected for this command is invalid. The
valid range is command dependent.

-5 DCB_INV_SUB_CMD_FOR_XFR_TYPE

The subcommand selected is invalid for use with the selected
data transfer type.

-6 RESERVED

-7 DCB_INV_ID_TYPE

The ID type (byte 23 of DCB) specified in as
ADDR_MSG_MODE transfer was invalid. Valid types are
IS_GID (1) and IS_LID (2).

A-4

LBI-38835

A-2.3 DCB Error Return Codes
(Return Level = 3)

Code Symbol/Meaning

-1 DCB_INV_PORT

The command is directed to an invalid port. The valid range
is 0 or 1.

-2 DCB_INV_XFR_TYPE

The selected transfer type is invalid for this command. Valid
transfer types are MSG_MODE (2) and ADDR_MSG_MODE
(10).

-3 DCB_INV_COMMAND

The command is invalid. The valid range is 1 to 6.

-4 DCB_INV_SUB_COMMAND

The subcommand selected for this command is invalid. The
valid range is command dependent.

-5 DCB_INV_SUB_CMD_FOR_XFR_TYPE

The subcommand selected is invalid for use with the selected
data transfer type.

-6 RESERVED

-7 DCB_INV_ID_TYPE

The ID type (byte 23 of DCB) specified in as
ADDR_MSG_MODE transfer was invalid. Valid types are
IS_GID (1) and IS_LID (2).

A-4

LBI-38835

-8 DCB_INV_DESTINATION_ID

The destination ID (bytes 24-25 of DCB) specified in as
ADDR_MSG_MODE transfer was invalid. Valid range is 0-
2047 for GID’s and 1-16382 for LID’s.

-9 RESERVED

-10 DCB_INV_POINTER

Any NULL pointer detected by CommServ involving the
DCB where a valid pointer in required.

-11 DCB_INV_BUFFER_SIZE

CommServ has detected that the buffer size parameter of the
DCB,BYTES 18-19, is zero for a WRITE or READ com-
mand, or the buffer size is larger than the receive buffer allo-
cated by CommServ at initialize time. e.g., the application
allocated a receive buffer of 6000 bytes and the READ com-
mand requests 6005 bytes. The 6005 exceeds the size of the
allocated receive buffer.

-12 RESERVED

-13 RESERVED

-14 RESERVED

-15 RESERVED

-16 DCB_INV_NEXT_DCB_POINTER

The Chained DCB pointer, BYTES 26-29, designated as point-
ing to the next DCB in the chain, when chaining is selected, is
NULL.

A-5

LBI-38835

-8 DCB_INV_DESTINATION_ID

The destination ID (bytes 24-25 of DCB) specified in as
ADDR_MSG_MODE transfer was invalid. Valid range is 0-
2047 for GID’s and 1-16382 for LID’s.

-9 RESERVED

-10 DCB_INV_POINTER

Any NULL pointer detected by CommServ involving the
DCB where a valid pointer in required.

-11 DCB_INV_BUFFER_SIZE

CommServ has detected that the buffer size parameter of the
DCB,BYTES 18-19, is zero for a WRITE or READ com-
mand, or the buffer size is larger than the receive buffer allo-
cated by CommServ at initialize time. e.g., the application
allocated a receive buffer of 6000 bytes and the READ com-
mand requests 6005 bytes. The 6005 exceeds the size of the
allocated receive buffer.

-12 RESERVED

-13 RESERVED

-14 RESERVED

-15 RESERVED

-16 DCB_INV_NEXT_DCB_POINTER

The Chained DCB pointer, BYTES 26-29, designated as point-
ing to the next DCB in the chain, when chaining is selected, is
NULL.

A-5

LBI-38835

A-2.4 INITIALIZE Structure Error Return Codes
(Return Level=3 unless otherwise noted)

Code Symbol/Meaning

-20 IS_INV_PORT_ATTRIBUTE

The PORT attribute in the INITIALIZE structure is invalid.
The only valid value is 4.

-21 IS_INV_PARITY

The PARITY in the INITIALIZE structure for this port is inva-
lid. The only valid value is 2.

-22 IS_INV_STOP_BITS

The number of STOP BITS in the INITIALIZE structure is in-
valid. The only valid value is 1.

-23 RESERVED

-24 IS_INV_WORD_LEN

The character WORD LENGTH in the INITIALIZE structure
is invalid. The only valid value is 3.

-25 IS_INV_PORT_ADDR

The port I/O address in the INITIALIZE structure is zero.
The default is zero when COM ports are not listed in the BIOS
Data area and produces this error if initialized.

A-6

LBI-38835

A-2.4 INITIALIZE Structure Error Return Codes
(Return Level=3 unless otherwise noted)

Code Symbol/Meaning

-20 IS_INV_PORT_ATTRIBUTE

The PORT attribute in the INITIALIZE structure is invalid.
The only valid value is 4.

-21 IS_INV_PARITY

The PARITY in the INITIALIZE structure for this port is inva-
lid. The only valid value is 2.

-22 IS_INV_STOP_BITS

The number of STOP BITS in the INITIALIZE structure is in-
valid. The only valid value is 1.

-23 RESERVED

-24 IS_INV_WORD_LEN

The character WORD LENGTH in the INITIALIZE structure
is invalid. The only valid value is 3.

-25 IS_INV_PORT_ADDR

The port I/O address in the INITIALIZE structure is zero.
The default is zero when COM ports are not listed in the BIOS
Data area and produces this error if initialized.

A-6

LBI-38835

-26 IS_INV_INT_NUM

The hardware Interrupt Vector Number used to install the
hardware Interrupt Service Routine (ISR) in low memory is
out of the range supported by CommServ. The valid range is
10 to 15.

-27 IS_INV_IRQ_NUM

The selected hardware Interrupt Request Number (IRQ) is out
of the range supported by CommServ. The valid range is 2 to
7.

-28 IS_INV_DESTINATION_ID

The default destination ID for messages using the
MSG_MODE transfer type is invalid. The destination ID is a
3 or 4 digit hex number expressed as ASCII characters. For
group ID’s (GID’s) the ASCII string must be "000" to "7FF"
with a null in the fourth character. For individual ID’s
(LID’s) the ASCII string must be "0001" to "3FFF".

-29 IS_Rx_Tx_MODE

The Rx/Tx Mode parameter in the port initialize structure is
not set for either receive or transmit.

-30 IS_INV_Rx_BUFFER_SIZE

The selected Rx buffer size for the receive buffer is below the
minimum (530) or above the maximum (51200).

-31 IS_INV_Tx_BUFFER_SIZE

The selected Tx buffer size for the transmit buffer is below the
minimum (530) or above the maximum (51200).

A-7

LBI-38835

-26 IS_INV_INT_NUM

The hardware Interrupt Vector Number used to install the
hardware Interrupt Service Routine (ISR) in low memory is
out of the range supported by CommServ. The valid range is
10 to 15.

-27 IS_INV_IRQ_NUM

The selected hardware Interrupt Request Number (IRQ) is out
of the range supported by CommServ. The valid range is 2 to
7.

-28 IS_INV_DESTINATION_ID

The default destination ID for messages using the
MSG_MODE transfer type is invalid. The destination ID is a
3 or 4 digit hex number expressed as ASCII characters. For
group ID’s (GID’s) the ASCII string must be "000" to "7FF"
with a null in the fourth character. For individual ID’s
(LID’s) the ASCII string must be "0001" to "3FFF".

-29 IS_Rx_Tx_MODE

The Rx/Tx Mode parameter in the port initialize structure is
not set for either receive or transmit.

-30 IS_INV_Rx_BUFFER_SIZE

The selected Rx buffer size for the receive buffer is below the
minimum (530) or above the maximum (51200).

-31 IS_INV_Tx_BUFFER_SIZE

The selected Tx buffer size for the transmit buffer is below the
minimum (530) or above the maximum (51200).

A-7

LBI-38835

-32 IS_NO_ROOM_IN_BUFFER_POOL

Not enough room is available in the CommServ buffer pool
for the requested Rx or Tx buffer size. The user must adjust
the size of the Rx or Tx buffer requested or remove and reload
CommServ with a new larger/Knn buffer pool request on the
command line.

-33 IS_INV_BAUD_RATE

The selected BAUD rate for this port is not in a valid range for
the device in use. The only valid value is 9600.

-34 RESERVED

-35 RESERVED

-36 RESERVED

-37 IS_INV_FLOW_CONTROL

The defined FLOW CONTROL method is invalid. The only
valid flow control method is RDI_FLOW_CTRL.

-38 RESERVED

-39 RESERVED

-40 RESERVED

-41 IS_SHARED_PORT_INT_IRQ_MISMATCH

There is a conflict on the port: All ports sharing the same IRQ
number must have the same interrupt vector number. This er-
ror is produced when 2 or more ports are initialized with the

A-8

LBI-38835

-32 IS_NO_ROOM_IN_BUFFER_POOL

Not enough room is available in the CommServ buffer pool
for the requested Rx or Tx buffer size. The user must adjust
the size of the Rx or Tx buffer requested or remove and reload
CommServ with a new larger/Knn buffer pool request on the
command line.

-33 IS_INV_BAUD_RATE

The selected BAUD rate for this port is not in a valid range for
the device in use. The only valid value is 9600.

-34 RESERVED

-35 RESERVED

-36 RESERVED

-37 IS_INV_FLOW_CONTROL

The defined FLOW CONTROL method is invalid. The only
valid flow control method is RDI_FLOW_CTRL.

-38 RESERVED

-39 RESERVED

-40 RESERVED

-41 IS_SHARED_PORT_INT_IRQ_MISMATCH

There is a conflict on the port: All ports sharing the same IRQ
number must have the same interrupt vector number. This er-
ror is produced when 2 or more ports are initialized with the

A-8

LBI-38835

same IRQ value and different interrupt vector numbers, or the
same interrupt vector numbers associated with multiple IRQ
numbers.

-42 IS_NO_UART_FOUND
(Return Level=6)

CommServ has detected there is no UART (8250 type) for the
selected port or I/O address. This is a hardware problem.

-43 IS_INV_RxTx_MODE_FOR_PORT_ATTRB

The port attribute indicates that both Rx and Tx interrupt
mode must be enabled for successful operation. Packet data
transfer method require both Rx and Tx to be enabled.

-44 IS_INTERRUPT_PENDING
(Return Level=5)

When attempting to initialize the interrupt controller (8259)
for the designated port, an active interrupt (a pending inter-
rupt) was found. This could be caused by the asynchronous
communication device not being properly closed by other com-
munications programs or by defective hardware. Reboot the
system. If this error persists, the hardware is defective or an-
other non-communication device is sharing the same interrupt
and causing this error.

A-9

LBI-38835

same IRQ value and different interrupt vector numbers, or the
same interrupt vector numbers associated with multiple IRQ
numbers.

-42 IS_NO_UART_FOUND
(Return Level=6)

CommServ has detected there is no UART (8250 type) for the
selected port or I/O address. This is a hardware problem.

-43 IS_INV_RxTx_MODE_FOR_PORT_ATTRB

The port attribute indicates that both Rx and Tx interrupt
mode must be enabled for successful operation. Packet data
transfer method require both Rx and Tx to be enabled.

-44 IS_INTERRUPT_PENDING
(Return Level=5)

When attempting to initialize the interrupt controller (8259)
for the designated port, an active interrupt (a pending inter-
rupt) was found. This could be caused by the asynchronous
communication device not being properly closed by other com-
munications programs or by defective hardware. Reboot the
system. If this error persists, the hardware is defective or an-
other non-communication device is sharing the same interrupt
and causing this error.

A-9

LBI-38835

A-2.5 Trace Related Error Return Codes
(Return Level=3)

Code Symbol/Meaning

-60 TR_NO_TRACE_OPTION

At least one trace option bit must be specified during initializ-
ing of trace.

-61 TR_INV_TRACE_STRUC_PTR

Pointer to the user structure is NULL. Refer to the definition
for initializing the trace pointers under "2.5.1 Initialize Sub-
commands".

-62 TR_INV_TRACE_BUFFER_SIZE

The trace buffer size contained in the trace structure is less
than 2 bytes. The size must be at least two bytes for
CommServ to place data into the designated buffer.

-63 TR_INV_TRACE_BUFFER_PTR

The pointer to the user trace buffer is NULL. Refer to the defi-
nition for initializing the trace pointers under "2.5.1 Initialize
Subcommands".

-64 TR_TRACE_NOT_INIT

A request to open tracing has been received by CommServ
and the trace structures have not been initialized for this port
using the INITIALIZE command with the appropriate subcom-
mand.

A-10

LBI-38835

A-2.5 Trace Related Error Return Codes
(Return Level=3)

Code Symbol/Meaning

-60 TR_NO_TRACE_OPTION

At least one trace option bit must be specified during initializ-
ing of trace.

-61 TR_INV_TRACE_STRUC_PTR

Pointer to the user structure is NULL. Refer to the definition
for initializing the trace pointers under "2.5.1 Initialize Sub-
commands".

-62 TR_INV_TRACE_BUFFER_SIZE

The trace buffer size contained in the trace structure is less
than 2 bytes. The size must be at least two bytes for
CommServ to place data into the designated buffer.

-63 TR_INV_TRACE_BUFFER_PTR

The pointer to the user trace buffer is NULL. Refer to the defi-
nition for initializing the trace pointers under "2.5.1 Initialize
Subcommands".

-64 TR_TRACE_NOT_INIT

A request to open tracing has been received by CommServ
and the trace structures have not been initialized for this port
using the INITIALIZE command with the appropriate subcom-
mand.

A-10

LBI-38835

A-2.6 CommServ Related Error Return Codes

Code Symbol/Meaning

-70 CM_OP_TIMEOUT
(Return Level = 4)

The requested operation has timed out. This error can occur if
insufficient time is provided during an OPEN, or WRITE.

-71 CS_INTERNAL_ERROR
(Return Level = 6)

This is a CommServ internal error.

-72 CS_ATTEMPT_TO_REENTER
(Return Level = 2)

The application has attempted to re-enter CommServ from
within CommServ. For example, if the application calls
CommServ from a timer-tick interrupt in the background and
calls CommServ in the foreground, this error occurs. This
may also happen when operating with CommServ while using
a debugger and exiting the debugger before allowing
CommServ to return to the caller.

-73 CS_UNSOLICITED_INTERRUPT
(Return Level = 5)

CommServ received an interrupt for the designated port which
was not recognized. The interrupt handler in CommServ can
only process 8250,16450, or 16550 type UART interrupts.
Therefore, all interrupts on this IRQ are blocked when an un-
solicited (unknown) interrupt occurs. This return code could
be caused by a defective communication adapter or a non-com-
munication device sharing the same interrupt. Reboot the sys-
tem. If this error persists, check the communication adapter
and other adapters in the system that may have inadvertently
been assigned the wrong IRQ number.

A-11

LBI-38835

A-2.6 CommServ Related Error Return Codes

Code Symbol/Meaning

-70 CM_OP_TIMEOUT
(Return Level = 4)

The requested operation has timed out. This error can occur if
insufficient time is provided during an OPEN, or WRITE.

-71 CS_INTERNAL_ERROR
(Return Level = 6)

This is a CommServ internal error.

-72 CS_ATTEMPT_TO_REENTER
(Return Level = 2)

The application has attempted to re-enter CommServ from
within CommServ. For example, if the application calls
CommServ from a timer-tick interrupt in the background and
calls CommServ in the foreground, this error occurs. This
may also happen when operating with CommServ while using
a debugger and exiting the debugger before allowing
CommServ to return to the caller.

-73 CS_UNSOLICITED_INTERRUPT
(Return Level = 5)

CommServ received an interrupt for the designated port which
was not recognized. The interrupt handler in CommServ can
only process 8250,16450, or 16550 type UART interrupts.
Therefore, all interrupts on this IRQ are blocked when an un-
solicited (unknown) interrupt occurs. This return code could
be caused by a defective communication adapter or a non-com-
munication device sharing the same interrupt. Reboot the sys-
tem. If this error persists, check the communication adapter
and other adapters in the system that may have inadvertently
been assigned the wrong IRQ number.

A-11

LBI-38835

A-2.7 CommServ State Error Return Codes

Code Symbol/Meaning

-80 ST_PORT_NOT_USED
(Return Level = 3)

The port attribute for the requested port is set to zero indicat-
ing the port in not in use. This can occur when trying to in-
itialize a port or initialize trace when the port attribute
indicates that the port is not used.

-81 ST_PORT_NOT_CLOSED
(Return Level = 3)

The port must be in STATE = CLOSED before issuing the
command that produced this error.

-82 ST_PORT_NOT_INIT
(Return Level = 3)

The port must be in STATE = INITIALIZED before issuing
the command that produced this error.

Note: If the port is in the OPEN state, the Port must be
CLOSED and then INITIALIZED before issuing the com-
mand that produced this error.

-83 ST_PORT_NOT_OPEN
(Return Level = 3)

A READ or WRITE command was issued and the port was
not opened with the OPEN command.

A-12

LBI-38835

A-2.7 CommServ State Error Return Codes

Code Symbol/Meaning

-80 ST_PORT_NOT_USED
(Return Level = 3)

The port attribute for the requested port is set to zero indicat-
ing the port in not in use. This can occur when trying to in-
itialize a port or initialize trace when the port attribute
indicates that the port is not used.

-81 ST_PORT_NOT_CLOSED
(Return Level = 3)

The port must be in STATE = CLOSED before issuing the
command that produced this error.

-82 ST_PORT_NOT_INIT
(Return Level = 3)

The port must be in STATE = INITIALIZED before issuing
the command that produced this error.

Note: If the port is in the OPEN state, the Port must be
CLOSED and then INITIALIZED before issuing the com-
mand that produced this error.

-83 ST_PORT_NOT_OPEN
(Return Level = 3)

A READ or WRITE command was issued and the port was
not opened with the OPEN command.

A-12

LBI-38835

-84 ST_PORT_BUSY
(Return Level = 2)

The selected port is in use. This is the normal response code
when waiting for an ACK, or trying to re-enter.

-85 ST_PORT_NOT_WAITING_FOR_ACK
(Return Level = 3)

The command to "inquire if an ACK has been received" (write
subcommand 04) was issued before the command to "transmit
without waiting for the ACK" (write subcommand 03) to be
executed.

-86 RESERVED

A-2.8 Radio Data Interface Error Return Codes

Code Symbol/Meaning

-120 RF_NO_MODEM_RESPONSE
(Return Level = 6)

The Radio Data Interface (RDI) does not respond to any com-
mands. This is an indication that the power may not be ON
for the RDI, the RDI is not attached, or the RDI itself is defec-
tive.

-121 RF_OUT_OF_RANGE
(Return Level = 5)

A message was transmitted by the RDI but not acknowledged
by the intended receiver. There are a number of conditions
that may cause this response: Physically out of range (in a tun-
nel, etc), defective Tx and/or Rx antennae on the mobile radio
or the BASE STATION antennae, or any other circumstances
that cause the transmitting mobile radio to not receive from
the BASE STATION for any reason.

A-13

LBI-38835

-84 ST_PORT_BUSY
(Return Level = 2)

The selected port is in use. This is the normal response code
when waiting for an ACK, or trying to re-enter.

-85 ST_PORT_NOT_WAITING_FOR_ACK
(Return Level = 3)

The command to "inquire if an ACK has been received" (write
subcommand 04) was issued before the command to "transmit
without waiting for the ACK" (write subcommand 03) to be
executed.

-86 RESERVED

A-2.8 Radio Data Interface Error Return Codes

Code Symbol/Meaning

-120 RF_NO_MODEM_RESPONSE
(Return Level = 6)

The Radio Data Interface (RDI) does not respond to any com-
mands. This is an indication that the power may not be ON
for the RDI, the RDI is not attached, or the RDI itself is defec-
tive.

-121 RF_OUT_OF_RANGE
(Return Level = 5)

A message was transmitted by the RDI but not acknowledged
by the intended receiver. There are a number of conditions
that may cause this response: Physically out of range (in a tun-
nel, etc), defective Tx and/or Rx antennae on the mobile radio
or the BASE STATION antennae, or any other circumstances
that cause the transmitting mobile radio to not receive from
the BASE STATION for any reason.

A-13

LBI-38835

-122 RF_NAKed_MESSAGE
(Return Level = 4)

The message sent by the RDI was aborted by the EDACS sys-
tem, and a NAK response was sent to the RDI. The message
is discarded by the RDI.

-123 RESERVED

-124 RESERVED

-125 RESERVED

-126 RF_PACKET_ERROR
(Return Level = 4)

The RDI detected an error in the transmit data packet pre-
sented to it. This is an RDI generated error. The user should
retry the operation.

-127 RESERVED

-128 RF_MSG_TOO_LONG
(Return Level = 3)

The maximum RDI write message size was exceeded. The
current packet size limit for the RDI is 2000 bytes, or the size
of the Tx buffer minus space for RDI protocol overhead,
whichever is less.

-129 RESERVED

-130 RESERVED

-131 RESERVED

A-14

LBI-38835

-122 RF_NAKed_MESSAGE
(Return Level = 4)

The message sent by the RDI was aborted by the EDACS sys-
tem, and a NAK response was sent to the RDI. The message
is discarded by the RDI.

-123 RESERVED

-124 RESERVED

-125 RESERVED

-126 RF_PACKET_ERROR
(Return Level = 4)

The RDI detected an error in the transmit data packet pre-
sented to it. This is an RDI generated error. The user should
retry the operation.

-127 RESERVED

-128 RF_MSG_TOO_LONG
(Return Level = 3)

The maximum RDI write message size was exceeded. The
current packet size limit for the RDI is 2000 bytes, or the size
of the Tx buffer minus space for RDI protocol overhead,
whichever is less.

-129 RESERVED

-130 RESERVED

-131 RESERVED

A-14

LBI-38835

-132 RESERVED

-133 RESERVED

-134 RF_TIMEOUT_VALUE_TOO_SMALL
(Return Level = 3)

The timeout value contained in the DCB is less than the mini-
mum value required to transmit the message or not zero (No
timeout). The minimum timeout depends upon packet length.
For a 2000 byte packet the minimum timeout is 180 timer
ticks.

The recommended timeout value is 550 timer ticks or approxi-
mately 30 seconds for network operations.

A-2.9 Abort Error Return Codes

Code Symbol/Meaning

-150 AB_ABORT_SEQ_ZERO_LEN
(Return Level = 3)

The keystroke byte count contains a zero (0) when the OPEN
command subcommand 07 was issued.

-151 AB_ABORT_SEQ_TOO_LONG
(Return Level = 3)

The keystroke sequence byte count exceeds the maximum of
four bytes.

-152 AB_USER_ABORT
(Return Level = 5)

This return code indicates that the current CommServ com-
mand was aborted by the user via a keyboard key sequence.

A-15

LBI-38835

-132 RESERVED

-133 RESERVED

-134 RF_TIMEOUT_VALUE_TOO_SMALL
(Return Level = 3)

The timeout value contained in the DCB is less than the mini-
mum value required to transmit the message or not zero (No
timeout). The minimum timeout depends upon packet length.
For a 2000 byte packet the minimum timeout is 180 timer
ticks.

The recommended timeout value is 550 timer ticks or approxi-
mately 30 seconds for network operations.

A-2.9 Abort Error Return Codes

Code Symbol/Meaning

-150 AB_ABORT_SEQ_ZERO_LEN
(Return Level = 3)

The keystroke byte count contains a zero (0) when the OPEN
command subcommand 07 was issued.

-151 AB_ABORT_SEQ_TOO_LONG
(Return Level = 3)

The keystroke sequence byte count exceeds the maximum of
four bytes.

-152 AB_USER_ABORT
(Return Level = 5)

This return code indicates that the current CommServ com-
mand was aborted by the user via a keyboard key sequence.

A-15

LBI-38835

A-2.10 READ Error Return Code

Code Symbol/Meaning

-160 Rx_BUFFER_EMPTY
(Return Level = 4)

The serial receive buffer is empty and the requested byte count
has not been exhausted when using packet mode transfer. The
number of bytes available in the receive buffer has reached
zero before the requested byte count value reaches zero. One
cause of data overruns is excessive time spent in servicing
higher priority interrupts than the communications port.

-161 Rx_USER_BUFFER_TOO_SMALL
(Return Level = 4)

The message in the Rx buffer is larger than then buffer sup-
plied to receive it. This is determined by checking the avail-
able message with the buffer size in the READ command
DCB.

-162 Rx_BAD_LEN_CHECK
(Return Level = 4)

This is an internal error and the application should retry the op-
eration.

-163 Rx_OVERRUN_ERROR
(Return Level = 4)

The "RECEIVE DATA" overrun error has occurred. The data
message(s) in CM receive buffer has missing character(s). It
may result in buffer empty or packet errors.

Data overrun conditions can also remove a character from the
UART before the next character is received. Generally, this is
caused by interrupts being disabled by other interrupt service
routines

A-16

LBI-38835

A-2.10 READ Error Return Code

Code Symbol/Meaning

-160 Rx_BUFFER_EMPTY
(Return Level = 4)

The serial receive buffer is empty and the requested byte count
has not been exhausted when using packet mode transfer. The
number of bytes available in the receive buffer has reached
zero before the requested byte count value reaches zero. One
cause of data overruns is excessive time spent in servicing
higher priority interrupts than the communications port.

-161 Rx_USER_BUFFER_TOO_SMALL
(Return Level = 4)

The message in the Rx buffer is larger than then buffer sup-
plied to receive it. This is determined by checking the avail-
able message with the buffer size in the READ command
DCB.

-162 Rx_BAD_LEN_CHECK
(Return Level = 4)

This is an internal error and the application should retry the op-
eration.

-163 Rx_OVERRUN_ERROR
(Return Level = 4)

The "RECEIVE DATA" overrun error has occurred. The data
message(s) in CM receive buffer has missing character(s). It
may result in buffer empty or packet errors.

Data overrun conditions can also remove a character from the
UART before the next character is received. Generally, this is
caused by interrupts being disabled by other interrupt service
routines

A-16

LBI-38835

for too long a period of time during receipt of a message. The appli-
cation may be disabling interrupts for too long a time period.
NOTE: The cs_reset_status () function call will clear this return
code.

-164 Rx_PARITY_ERROR
(Return Level = 4)

There was a PARITY error detected on received character.
The data in the receive buffer may have invalid characters.
This is generally caused by data corruption on the circuit. The
remote transmitter can send characters to the receiver with the
wrong parity. NOTE: The cs_reset_status () function call
will clear this return code.

-165 Rx_FRAMING_ERROR
(Return Level = 4)

A framing error occurred during receiving of data. The data in
the receive buffer may be invalid. This can be caused by data
degeneration due to poor data transmission quality or different
Baud rates between sender and receiver. NOTE: The cs_re-
set_status () function call will clear this return code.

-166 RESERVED

-167 Rx_BUFFER_OVERFLOW
(Return Level = 4)

More characters were received than could fit in the receive
buffer. The extra characters were lost.

A-2.11 Library Error Return Codes
(Return Level = 3)

Code Symbol/Meaning

-500 LB_NO_CS_PRESENT

A-17

LBI-38835

for too long a period of time during receipt of a message. The appli-
cation may be disabling interrupts for too long a time period.
NOTE: The cs_reset_status () function call will clear this return
code.

-164 Rx_PARITY_ERROR
(Return Level = 4)

There was a PARITY error detected on received character.
The data in the receive buffer may have invalid characters.
This is generally caused by data corruption on the circuit. The
remote transmitter can send characters to the receiver with the
wrong parity. NOTE: The cs_reset_status () function call
will clear this return code.

-165 Rx_FRAMING_ERROR
(Return Level = 4)

A framing error occurred during receiving of data. The data in
the receive buffer may be invalid. This can be caused by data
degeneration due to poor data transmission quality or different
Baud rates between sender and receiver. NOTE: The cs_re-
set_status () function call will clear this return code.

-166 RESERVED

-167 Rx_BUFFER_OVERFLOW
(Return Level = 4)

More characters were received than could fit in the receive
buffer. The extra characters were lost.

A-2.11 Library Error Return Codes
(Return Level = 3)

Code Symbol/Meaning

-500 LB_NO_CS_PRESENT

A-17

LBI-38835

CommServ could not be found in memory.

-501 RESERVED

-502 LB_INV_POINTER

The DCB pointer is NULL.

-503 LB_NO_MEMORY

There was insufficient memory available to complete this re-
quest.

-504 RESERVED

-505 RESERVED

-506 LB_TRACE_ALREADY_ALLOCATED

The current trace buffers must be freed before new buffers can
be allocated.

-507 LB_TRACE_ALREADY_FREED

The trace buffers must be allocated before they can be freed.

-508 LB_TIMEOUT_VALUE_TOO_SMALL

The timeout value specified is too small. Set the timeout
equal or greater than the minimum, or set the timeout to 0 =
forever.

-509 LB_INV_POINTER_ACTUAL_COUNT

The pointer is NULL to the actual_count parameter of a
cs_read, cs_write, cs_rx_trace_read or cs_tx_trace_read call.

A-18

LBI-38835

CommServ could not be found in memory.

-501 RESERVED

-502 LB_INV_POINTER

The DCB pointer is NULL.

-503 LB_NO_MEMORY

There was insufficient memory available to complete this re-
quest.

-504 RESERVED

-505 RESERVED

-506 LB_TRACE_ALREADY_ALLOCATED

The current trace buffers must be freed before new buffers can
be allocated.

-507 LB_TRACE_ALREADY_FREED

The trace buffers must be allocated before they can be freed.

-508 LB_TIMEOUT_VALUE_TOO_SMALL

The timeout value specified is too small. Set the timeout
equal or greater than the minimum, or set the timeout to 0 =
forever.

-509 LB_INV_POINTER_ACTUAL_COUNT

The pointer is NULL to the actual_count parameter of a
cs_read, cs_write, cs_rx_trace_read or cs_tx_trace_read call.

A-18

LBI-38835

Appendix B

MDALib to CommServ Relationships

Figure B-1. MDALib to CommServ Call Relationships (Part 1 of 3)

B-1

LBI-38835

Appendix B

MDALib to CommServ Relationships

Figure B-1. MDALib to CommServ Call Relationships (Part 1 of 3)

B-1

LBI-38835

Figure B-2. MDALib to CommServ Call Relationships (Part 2 of 3)

B-2

LBI-38835

Figure B-2. MDALib to CommServ Call Relationships (Part 2 of 3)

B-2

LBI-38835

Figure B-3. MDALib to CommServ Call Relationships (Part 3 of 3)

B-3

LBI-38835

Figure B-3. MDALib to CommServ Call Relationships (Part 3 of 3)

B-3

LBI-38835

This page intentionally left blank.

B-4

LBI-38835

This page intentionally left blank.

B-4

LBI-38835

Appendix C

Coding Examples

C-1. Introduction

The following information gives example coding, that can be used.
The sequence indicated in the examples is recommended.

C-2. MDALib Calling Order

The table below shows the minimum number of calls required to
use a port (the read and write calls may be in any order with each
other, and both read and write need not be used. All function return
codes should be checked.

C-3. Reading the Rx Buffer

The following cs_get calls check the buffer contents. The
cs_get_rx_buffer_count can be used with the message transfer
type, but protocol bytes are reported. That can be misleading if not
taken into account.

C-1

LBI-38835

Appendix C

Coding Examples

C-1. Introduction

The following information gives example coding, that can be used.
The sequence indicated in the examples is recommended.

C-2. MDALib Calling Order

The table below shows the minimum number of calls required to
use a port (the read and write calls may be in any order with each
other, and both read and write need not be used. All function return
codes should be checked.

C-3. Reading the Rx Buffer

The following cs_get calls check the buffer contents. The
cs_get_rx_buffer_count can be used with the message transfer
type, but protocol bytes are reported. That can be misleading if not
taken into account.

C-1

LBI-38835

C-4. Using Trace and User_Abort Calls

The sample shown is used with a Radio Packet modem on port
COM1, but is applicable to other ports. Trace and Abort can be
used on individual calls, and are independent of the port Open and
Close calls. Trace can be started anytime, and User_Abort can be
enabled anytime.

C-2

LBI-38835

C-4. Using Trace and User_Abort Calls

The sample shown is used with a Radio Packet modem on port
COM1, but is applicable to other ports. Trace and Abort can be
used on individual calls, and are independent of the port Open and
Close calls. Trace can be started anytime, and User_Abort can be
enabled anytime.

C-2

LBI-38835

Appendix D

Return Codes and API Calls

D-1. Introduction

CommServ generates most of the Return Codes; the MDAPI passes
them to the application. The following tables associate each return
code to the MDAPI function call that could return it.

Figure D-1. Return Codes and MDALib Calls (Part 1 of 3)

D-1

LBI-38835

Appendix D

Return Codes and API Calls

D-1. Introduction

CommServ generates most of the Return Codes; the MDAPI passes
them to the application. The following tables associate each return
code to the MDAPI function call that could return it.

Figure D-1. Return Codes and MDALib Calls (Part 1 of 3)

D-1

LBI-38835

NOTE: 1. CommServ should not return this error if MDALib is being
used. If this error appears there is a bug in the MDAPI li-
brary or the environment in which it is running.

Figure D-2. Return Codes and MDALib Calls (Part 2 of 3)

NOTE:

1. CommServ should not return this error if MDALib is being
used. If this error appears there is a bug in the MDAPI library or
the environment in which it is running.

NOTE:

2. When CommServ is in the cs_waiting_for_ack state, many calls,
not cs_gets, return this.

D-2

LBI-38835

NOTE: 1. CommServ should not return this error if MDALib is being
used. If this error appears there is a bug in the MDAPI li-
brary or the environment in which it is running.

Figure D-2. Return Codes and MDALib Calls (Part 2 of 3)

NOTE:

1. CommServ should not return this error if MDALib is being
used. If this error appears there is a bug in the MDAPI library or
the environment in which it is running.

NOTE:

2. When CommServ is in the cs_waiting_for_ack state, many calls,
not cs_gets, return this.

D-2

LBI-38835

Figure D-4. Return Codes and MDALib Calls (Part 3 of 3)

NOTE: 1. CommServ should not return this error if MDALib is being
used. If this error appears there is a bug in the MDAPI li-
brary or the environment in which it is running.

D-3

Printed in U.S.A.

LBI-38835

Figure D-4. Return Codes and MDALib Calls (Part 3 of 3)

NOTE: 1. CommServ should not return this error if MDALib is being
used. If this error appears there is a bug in the MDAPI li-
brary or the environment in which it is running.

D-3

Printed in U.S.A.

LBI-38835

