GRiD OPERATING SYSTEM (BRiD-0S8) REFERENCE

JUNE 1984

D

COPYRIGHT {(C) 1984 GRiD Systems Corporation
2835 bGarcia Avenue

Mountain View, CA 94043

{415) 961-4800

Manual Name : GRiD Operating System (GRiD-08) Reference
Order Number: 29200-44%
Issue date: June 1984

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopy, recording,
or otherwise, without the prior written permission of GRiD Systems Corporation.

The information in this document is subject to change without notice.

NEITHER GRiD SYSTEMS CORPORATION NOR THIS DOCUMENT MAKES ANY EXPRESSED OR IMPLIED
WARRANTY, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
GUALITY, OR FITNESS FDR A PARTICULAR PURPDSE. GRiD Systems Corporation makes no o
representation as to the accuracy or adequacy of this document. GRiD Systems -
Corporation has no obligation to update or keep current the information contained in

this document.

GRiD System Corporation’s software products are copyrighted by and shall remain the
property of GRiD Systems Corporation.

The following are trademarks of GRiD Systems Corporation: GRiD, Compass Computer.

The following is a trademark of Intel Corporation: Intel.

TABLE OF CONTENTS

CHAPTER 1:+ AN INTRODUCTION TO THE GRID OPERATING SYBTEM (BRID-08)

Features of BRID-05, . « « . ¢ v ¢ ¢ ¢ o o ¢ o 4 & a 5 g IS
Data Types .+ « & & & 2 & « & 2 s s ¢ 8 5 o« o 5 8 ¢« 0 ¢ & 4 1=
Short Strings . . « & + & & 4 @ s s a s e w e s s s e s K-
The Bytes Type . & ¢ « v ¢ o o o o 3 » « o & 1 ¢ v & o o 1=

~ o~ O~ e

CHAPTER 2: PROCESSOR AND MEMORY MANAGEMENT FACILITIES

Processor Mapagement ¢ &« « v s v 4 v s e 4w ox s
What Iz a Process . ¢« ¢« o o & & & 2 o « 2 s ¢ 1 o o o
Process Scheduling -- an Overview + &+ « + v & + + & &
Creating Deleting and Executing Processes . . . « « . .

Messages -- Sending and Recelving . « + « & « « o« « v o & &
Message TYPBS & « v 4 o o+ o o 4 & & a2 4 4 s s o4 e ox e s
Message Transfer Example . o ¢« « & & & &+ ¢ s o « = o« &«
Passing Notes . . v & « v v o v ¢ a4 o 8 2 a4« 0 0 0 e
Message Format . -+ 4 & ¢ v & s % 4 & 2 v w4 e s 2w s

Creating and Using Semaphores . .+ « « « 5 o« o « = 5 + o &
Semaphore Note Passing + v « & o o ¢ & o & 0 ¢ 1 o v 4

Memory Management Facilities . . . ¢« & ¢ ¢« & « & & « o & 4 &

I T |

|
~ O~ A LN N & . 3 Gy BT o= ne

[N ORI S o I T DO T 6 O Y GO 6 N
¥

CHAPTER 3: DEVICE AND FILE MANAGEMENT FACILITIES

Pathnames . & + 4+ & 4 & s+ « & s & 3 2 o & « 2 5 2 o 4 o &+ 4

DEVIEES v ¢ v v ¢ v ¢ s 4 & 0 s w w4 r e e e e

Subjects and Titles . + + & ¢ & & ¢ & o « o s o a4 o+

File Kinds o+ v +» « « & v o v s 4 « &

An Overview of File Management Calls .
Operating on Files+ .

LI N B |
O- LA LN & G4

el A T G G

Current File FPosition Marker . + « + « + o o o« o « s o » 3=7
Operating on File Directories . . + « « v o o o &« « v o« 3-7

CHAPTER 4. WINDOW GRAPHICS

Setting Up Windows + . v + & o 4 « & o « s & & o« s » 2 o o
Alternate Windows . . « & ¢ o &« 4 o & & 4 s e s 4 @ & e 4 e
Clipping Rectangles . . « « o« o & &+ & ¢ s & « & o o o o o
Text Graphics + « o ¢« ¢ o a0 o & & & & 4 5 o4 w4 e e 4w s
Character Fonts » v + o ¢ o v 2 & 3 & & 5 o ¢ s & s 5 & s
Line Braphic€s « « & ¢« + & & o o 1 « o o s 5 & & 1 o o o &
Pirel Braphics . + v 4 v o v 4 s & v & & o o & o o & s & &
Coordinate System . . « v &« ¢ o« ¢ « ¢ & ¢ & o ¢ 1 & o a4 1 3
Data Structures o « o v + & ¢« v ¢ ¢ s 1 4 ¢ 2 2 a2 s a4+ s e

o B B B g P
t
[B L I P RS B)

CHAPTER 5. CONSOLE ROUTINES

CHAPTER 4. ©RiD-0S PROCEDURES AND FUNCTIONS

BaseLine . . . ¢ v ¢ ¢ o v 0 0 s s s & x s a8 % 8w s w
CharHeight . . . « ¢ « & & v & v o « & & s o o s &
CharWidth . . . &« « & v ¢« s & 4 o v ¢ 4 2 a

ConCharlIn o o v v « & & & & & & 5 5 5 &« 1 & & 2 1 s o s »
ConCharBut . « & &« & v 4 ¢ « v o « o o o o 4 o ¢ 4 0 & o o »
ConDefCsr . + & « & & ¢ v & o 4 & » & ® 2 5 a2 5 o 5 o » &
CEonHexBut . . . &+ + & ¢ ¢ &« & & & o o 2 s o o«
ConkeyPressed . . . & & &+ o & + & o & o 2 5 5 = & & o o &
ConLineln o & 4« 4 v v o & & ¢ 4 4 0 s s s 4 s s e e s s e
ConLineOut+ o & « v v v & ¢ v o & 5 & 5 s ¢ o » v + 4
ConMoveCsr . . . + v « v @« v & o v 4 4 ¢ 4 & 4 2 o 4 a4 & 2 s
ConPeekChar . . . &+ & 4 & & & & & & 4 4 & & & & & a & 2 1
ConResetDisplay .

LineHeight . . . v ¢ + v « & o v ¢ o 4 v &+ o 2 4 0w s s
GetConsnleState « .+ &«

OsfddDevice o « « + 4 o & v & v s 0 v e e w e e
DsAllocate . . « v v ¢ & & v w e 4 e e e e e e e e s e e
s e R -
DsCallbBriver . & v v v ¢ v & o o o s o o o o 4 ¢ v 5 6 4 0 s
0sChangetxtension . . . + . +
OsClose & &+ & & & & o « « A oo oD o000 0
OsCreateProCesSs » & & v 4 v 4 4 & & o 5+ 4 s 4« o o« s o« » o b-16
OsCreateSemaphore « .« v &+ « & ¢ & 4 o s o s & o « & 2 &« b6-17
OsDecodeException . « v & v + &« & &« 4 + 4 ¢+ 4 s s o« . .« « b-iB
DsDelay + « v v o o & s 6 2 4 4 ¢ 1 5 1 4 e 4 e 4 e 4 s 4« b-1%
DsDelete &« & ¢ & v v v o 4 4 & 4 v e v 4 e e e e e a aoa B=20
OsDeleteProCess + +« v v v ¢ « 4 4 & o 2 o o v 4+ 4 + a0 s+ 2 H-21
DsDeleteSemaphore . « v v v v « + 4 4+ 4 a4 e 0 0 4 ow a o« . 6=21
Oshetach . . &« v 4 v 4 e & & o o o & & v 4w v 4 e 4 & o4 o« 627
e A S R R L R R
OsFlushAlIBuffers . v v v o v v ¢ v o ¢ o ¢« ¢ o + o = o« 627
OsForkProcess . o v v v v v & v+ 1 v s v e s o4 x o a o+ 1 o4 . b-29

[[N N Y B N B |

s 00 OO D BN

o

=

o>~ 00000 O
[} t
[ol
ol oo

o~
L}

1

®

P

BsFree = + « v « v ¢ 4 4
DsGetArqument

OsGetMemStatus
OsGetPrefin . . .
OsGetProperty . . .
OsGetSize
Os6etStatus . 5
OsGetSystemlD .
DsGetTime . . .
OsGetWork . .
OsLooklUpName . . + « .
OsMatch¥Wildcard .

OsCpen « & « « v o « o
OsDverlay . + « « o 4 &

fsPutProperty

fishead . « + + + + « 4
OsReceive + + « & o o o

OsRegisterName , . ,
OsRemovedevice . . .
OsRename

OsSeek . . ¢ « .
OsSend
DsSetPriority . « + . .
DsSetStatus . « . + . .
OsSignal
DsSwitchBuffer .
OsTruncate . . .
OsWait
OsWhoAmI
DsWrite ¢« « . &
WinAllocateWindowMemory
WinClipLine . . + « « .
WinClipRectangle
WinCopyRectangle
WinCopyRemoteRectangle .
WinbrawChar . + . « . .
WinDrawChars . . + . . .
WinDrawline . « + + « &
WinDrawPixel &
WinEraseChar . « + « . .
WinEraseLine . + . + . .
WinErasePixel . . + .
WinEraseRectangle . . .
WinEraseWindow
WinFrameWindow . . » . .
WinGetWindowExtent , . .
HinInitDefaultWindow . .
WinlnvertChar . + + . &
WinlnvertLline . . « . .
WinInvertPixel . . « ., .
WinlnvertRectangle . . .
WinLoadFont . . « . .« &

= & & s =
= = ® s =
-
-

e« = & & a
- = s =
« = e =
2 % = =

= ®= p = =
« = & = 9

o000 O 0 O
t

2N U L |

LI I R R T | |
P G G G G Ll L A G B B D D
g = S DO AN 0000

oo~ o~
LI B)
I b e
~ O~ &

. &-48
. 6-479
. 630

6-51

-3

. 6-53
. b-33

b-3b
&-57

. 6-39

-39
b6-80
b-462

. b-A3

b-43
6-64
6-43

» 6-65

b6-46
b-bb
&-67

. b-67

5-68
b-56B
b-469
669
6-70
&4-70
6-71
6-71
6-72

. &-72

6-73

WinResetClip + + & v ¢« + ¢ s s o+ & 4 & &

HinScrollRectangle . & + « + + v ¢« 4 o v

WinScrollWindow . &+ + + « & & & ¢ & & & o &
WinSetAlternateWindow + « v « ¢+ 2+ & « ¢« ¢
WinSetllip
WinSetFont
HinSetWindow

APPENDIX A. Compass Computer Keyboard Codes

vi

6-73
6-74
6-75
6-74
6-76
677
5-78

ABPDODUT THIS BOOK

This book is a programmer’'s guide to the GRiD Operating Systea (BRiD-0S). It
defines all of the calls that can be made to the operating systea froa
application programs and provides overviews of how the calls can be used.

This book is not intended to be user’s guide to the operating system. GRiD
application programs all utilize the facilities of 6RiD-0% and the Common Code
routines to provide an easy-to-use, menu-driven interface so that the
operating system is transparent to the user.

Chapter | introduces the operating system and lists all of the calls availables
to programmers and should be read to obtain on overview of the facilities that
are available.

Chapters 2 through 5 discuss the various categories of system calls and are
intended to give you some bhackground information and general theory on haw the
calls interact with one another. These chapters should be read first bhefore
proceeding to the detailed descriptions of the 05 calls if you are a new user
of GRiD-DS,

Chapter & provides a detailed description of each system procedure and
function. The calls are listed in alphabetic order to make this chapter easy
to use as a reference document once you are generally familiar with the
operating system.

CHAPTER 1. AN INTRODUCTION TO THE BRiD DPERATING BYSTEM (BRiD-08)

The GRiD Operating System (G6RiD-0S5) has been designed to support GRiD's
application programs, such as GRiDPLAN, GRiDPLOT, GRiDWRITE, and GRiDFILE, and
to simplify the development of other application programs using any af the
available languages (Pascal, PL/M, Assembly, FORTRAN, and C).

FEATURES OF BRiD-08

BRiD-DS is essentially a resource management tool that simplifies memory
management, and device and file management. Additionally, GRiD-0S supports
muititasking and provides a variety of system utility services.

Table 1-1 summarizes the system calls provided by GRiD-0S and indicates the

chapter where an overview of the calls is provided. Detailed descriptions of
all system calls are provided in the alphabetically-ordered Chapter &.

Introduction 1-1

Table 1-1.

A Summary of GRiD-085 Calls

PRDCESSOR AND MEMORY MANAGEMENT (Chapter 2)

OsCreateProcess

OsForkProcess
OsDelay

DsSetPriority
OsHhoAm!

DsPDeleteProcess
OsExit

DsReceive

GsSend
OsCreateSemaphore
OsWait

OsSignal

OsbeleteSemaphore
DsAllpcate

OsFree
OsGetSize
OsGetMemStatus

Creates a process by loading a program from mass
storage.

Creates a process from a parameterless procedure.
Suspends execution of a process for a specified delay
interval.

Changes the priority of a process.

Returns the identification nuaber assigned to a
process,

Deletes another process from the systea.

Deletes the current process from the system and frees
its resources.

Suspends execution of a process while it awaits a
message.

Sends a message to another process.

Creates a semaphore for use with OsSignal and 0sWait,
Suspends execution of a process while it waits at a
semaphore for an OsSignal.

Signals a semaphore to allow a waiting process to
proceed.

Deletes a semaphore.

Allocates from | to b4k bytes of memory to the
requesting process.

Deallocates a previously assigned block of memory.
Returns the size of a particular block of memory.
Provides information about memory allocation.

DEVICE AND FILE MANAGEMENT (Chapter 3}

OsAttach
Os0pen
OsRead
OsWrite
DsSeek

OsTruncate
OsFlushAllBuffers

OsRename
OsChangeExtension
OsClose

OsDelete

OsDetach
OsGetStatus
QcSetStatus

Makes a device or file available to a progran,
Allocates buffers for an attached file.

Reads data from an open file.

Writes data to an open file,

Changes the point at which a subseguent access of an
open file will begin.

Deletes data from the end of an open file.

Writes the contents of memory buffers to all open
files.

Changes the name of an attached file.

Changes only the extension portion of a file’'s name.
Closes and deallocates memory assigned to a file.
Deletes an open file from the systea.

Makes a file unavailable to prograams.

Provides summary information about an attached file,
Establishes device specific status information
associated with an attached file.

WINDOW GRAPHICS CALLS (Chapter 4)

Baseline

Returns the baseline position of the current tont.

1-2 GRiD-0S5 Reference

C

O

! -

CharHeight
CharWidth
LineHeight

WinInitDefaultWindow

Returns the height of characters in the current font.
Returns the width of characters in the current font.
fReturns the height of a character line in the current
font.

Clears the window, resets the clipping rectangle, and
(if specified) draws a one-pixel frame surrounding the

| sereen.

WinSetWindow
WinFrameWindow

WinEraseWindow
WinScrollWindow

WinGetWindowExtent
WinSetClip
YinResetClip
WinEraseRectangle
WinlnvertRectangle
WinCopyRectangle
WinScrollRectangle
WinSetAlternateWindow
WinCopyRemoteRectangle
WinAllocateWindowMemory

WinDrawChar

WinEraselhar
WinInvertChar

WinDrawChars
WinLoadFont
WinSetFont

WinDrawline
WinEraseline
WinInvertLine
WinDrawPixel
WinErasePixel
WinInvertPixel

Sets the window size to the rectangle it receives as
an argument.

Draws a ore-pixel frame outside the current window
bounds.

Erases the contents of the current window.

Scrolls the entire window in the given direction by
the distance given in pixels.

Returns the dimensions of the applicatien’'s current
window.

Sets a clipping rectangle within the window
boundaries,

Resets the clipping rectangle to the entire window.
Erases a rectangle in the window.

Inverts the bit-map area inside a rectangle in the
window,

Copies one rectangle into another rectangular area of
the window.

Scrolls a rectangle in the given direction by the
distance given in pixels,

Forces all subsequent window calls to be performed on
the alternate window specified.

Copies a rectangle from one window to another.
Allocates memory for an alternate window.

Draws a character in the window at a specified pixel
location.,

Erases a character position.

Performs an inversion of all the pixels of a character
position.

Outputs a ctharacter string of a specified length from
a text buffer to the screen.

Loads a font file into memory and returns a pointer to
the font,

Sets the designated (previously lcaded) font as the
turrent font.

Draws a line within the window.

Erases a line within the current window.

Inverts all the pixels on the given line.

Draws a single pixel at the given window coordinate.
Erases a single pixel at the given window coordinate,
Inverts a single pixel at the given window coardinate.

CONSDLE CALLS (Chapter 3)

ConKeyPressed
CanCharln

Tells you if any key on the keyboard has been pressed.
Waits for one character to be typed on the keyboard

Introduction 1-3

EonDefCsr
ConResetDisplay

ConMoveCsr
ConCharQut
ConLineQut
ConLineln

ConPeekChar
ConHexOut

and then returns that character.

Turns the small cursor character on or off.
Clears the screen and displays the cursor character at
the top, left hand position of the window.

Moves the cursor to the specified x,y character
position on the screen,

Qutputs the supplied character to the screen at the
current cursor position,

Outputs the number of characters specified by length
to the screen.

Inputs the number of characters specified by length
from the keyboard.

Returns the first character in the keyboard queue.
Dutputs the supplied hexadecimal value to the screen
at the current cursor poasition.

GENERAL UTILITY CALLS

0sGetArgument
OsSwitchBuffer
OsOverlay
DsGetSystemlDd
DsGetTime
OsGetWark
OsRegisterName

OslLookUpName

OsDecodeException
OsHandleCancel
DsMatchWildcard
OsCallDriver

OsAddDevice
DsRemoveDevice

OsPutProperty

OsGetProperty

Scans and parses the contents of the coamand line or
other designated buffer.

Changes the buffer that OsGetArgument operates on.
Brings a subprogram i1nto memory.

Returns system identification information.

Returns all information from the system clock.

Returns a pointer to the current “"work" device used by
compilers and the link progranm.

Registers a name and a small amount of associated
information.,

Looks for a name that has been previously registered
and returns some information associated with that
name.

Translates an exception number into an exception
message,

Specifies whether the systeam or application program
will handle CODE-ESE.

Compares a target string, for example a file nanme,
against a string containing wildcard characters.

Used by device drivers to pass device-specific
requests.

Adds a device to the system’'s table of active devices,
Removes a device from the system’'s table of active
devices.

Sets a system property such as screen frame or time in
the User“Profile™ file.

Examines a system property such as screen frame or
time in the User*Prafile™ file.

1-4

GRiD-0S Reference

DATA TYPES

The descriptions of the system calls in this book use the data types defined
by Pascal-B& (which include some extensions beyond those of standard Pascal).
Your calls must supply parameters meeting the specifications of these data
types as defined in Tahle 1-2,

Table 1-2. Data Types for GRiD-05 Calls

Type Description

Boolean Simple ordinal with predefined values of False (0) and
True (1).

Byte An enumerated type defined (0..255).

Integer Simple ordinal of two bytes in the range -32747 through
+327617.

Char A simple ordinal defined on the ASCII charactar set.

sWord Simple ordinal of two bytes. Integers in the range 0
through 45535. \Unsigned.

*LonglInt Simple ordinal of four bytes in the range -2,147,483,647
through 42,147 483,647,

Pointer In Pascal, must be declared by the programmer as a
pointer to some defined type.

* Indicates a Pascal-86 extension of standard Pascal data types.

Short&trings

The ShortString type is simply a collection of bytes, the first of which tells
you how many data bytes follow., It is used to describe any seguence of bytes
where the first byte (also known as the “length" byte) represents the nuamber
of bytes {0 - 255) in the sequence (excluding the length byte). Thus, this
type is often used to interface to operating system routines that require
ASCII names (such as filenames) which don't have a standard length.
ShortStrings are different from (and should not be confused with) strings
found in the Common Code routines and in some versions of Pascal or C.
ShortStrings can be defined as:

ShortString = RECORD
length : Byte;
Charg : [0..255) OF Char;
END

Introduction -5

When you call a BRiD-O8 routine that expects a parameter formatted as a
ShortString, you must pass the parameter by reference rather than by value. (T“\
That is, you pass a pointer to the shortstring rather than passing the ,)
structure itself. S5ince many routines accept ShortStrings shorter than the
maximum length of 255 bytes, you can often declare shorter versions of this

type to save nemary space,

Bytes

Pascal-B4 defines one special data type to override standard Pascal’'s rigorous
type-checking., It is the Bytes type. Note that this is not the Byte
{singular) type. The Bytes type is not part of standard Pascal.

A parameter of a procedure or function outside of any madule (such as a system
call) can be defined to be of type Bytes, This lets you pass any type of
variable as a parameter and bypass Pascal ‘s normal type-checking. Regardless
of the parampter type actually passed, it will always be passed by reference,
not by value.

Some of the operating system routines require the Bytes type because it is not
known ahead of time exactly which type will be used. Use great caution when
passing a pointer variable as a parameter which is of the Bytes type. The
Bytes parameter is thus acting as an untyped pointer. For example, Osfre and
OsSend use Bytes parameters so that they can accept a pointer of any type.

The pointer must be dereferenced {use *~ at the end) to ensure that the correct
value is passed,

NOTE: The Bytes identifier can appear only in ap external module’s PUBLIC

saction: see the Pascal-Bé manual for a detailed discussion of the Bytes
type.

1-6 GRiD-DS8 Reference

CHAPTER 2: PROCESSOR AND MEMDRY MANABEMENT FACILITIES

Two critical resources of the 6RiD Compass are the central processing unit and
system memory (RAM). Ultimately, the efficiency of the entire system depends
on how efficiently you utilize the power of the central processor and how you

manage the available memory.

PROCESBDOR MANABEMENT

GRiD-05 maximizes the power, or throughput, of the central processor by using
a multi-tasking technique -- the various activities that the systea must
accomplish are broken into individual tasks or processes. You assign each
process a priority which determines when it will be given the use of the
central processor. This technique ensures that the central processor is never
idle and is always working on the "ready" process with the highest priority.
(We'l]l describe the precise meaning of "ready" in a few paragraphs.)

Typically, many of the processes in the system must interact with one another.
They may have a need to share data, pass information back and forth, check on
the availability of information from another process, wait for the occurrence
of some external event, and so on. Therefore, in addition to scheduling
process access to the central processor, GRiD-0S provides the synchronization
mechanisms of message passing and semaphore signalling.

In this chapter, we will describe how processes are scheduled, how they are
created, executed, and deleted, and how information is passed between
processes,

WHAT IS A PROCESS?

A process is an executable entity consisting of some data and some executable
code, and requiring its own set of registers and its own stack area., Since
the GRiD Compass is a single processor system, only one process can be
executing at any instant in time. However, many processes can be created and
exist simultaneously within the system: GRiD-08 controls the scheduling and
execution sequencing of multiple processes.

Processor and Memory Management 21

Process Scheduling -- An Overview (f“\
F

GRiD-05 performs process scheduling whenever any process issues any system
call or when an event which a process has been ‘waiting’ for occurs. The
scheduling technique used by BRiD-0S can be defined as priority-based,
preemptive scheduling. It is called priority based since each process has a
priority rating assigned to it when it is created. GRiD-0S examines this
priority whenever it does process scheduling to determine which process should
be the current, running process. The scheduling algorithm is called
preemptive because GRiD-05 can preeampt the current process whenever
rescheduling occurs,

There are many system calls that affect process scheduling, We will give a
hrief overview here of the technique used by GRiD-05 to handle multiple
processes., Details of the calls that affect scheduling are provided with the
description of each call in Chapter 4.

The following illustration is a simplified state diagram showing the three
possible states in which processes can exist. It also shows all possible

transition paths that a process can traverse as it goes from one state to

another:

EI READY - C

b 4

WAIT | H— RN

FIGURE 2-1. Process State Diagranm

Since there is but one central processor in the GRID Compass system, only one
process can actually be executing at any given moment. This process is
sometimes referred to as the “current" process and its state is referred to as
the “run" state. All other processes existing in the system are either in the
"ready” state or the "wait” state,

Note in the preceding illustration that the run state is indicated by a single
circle, while the ready and wait states are indicated by several concentric

C

2-2 GRiD-05 Reference

4

circles. This convention indicates that there can be but one process in the
run state, while there can be any number of processes in the ready and wait
states.,

A1l processes begin their existence in the ready state. Transition #i to the
run state occurs when the process becomes the ready process with the highest
priority. The process remains in the run state until (transition #2) a
process with higher priority enters the ready state, or {transition #3} the
process must wait for some event to occur.

Note that GRiD-DS does its process scheduling whenever an event occurs that
tauses a waiting process to enter the ready state. Examples of these events

- are hardware interrupts, reception by waiting processes of messages or

signals, or completion of timed wWaits by processes. Whenever any of these
events occur, BRiD-DS examines the priorities of the ready processes and, if
any of them is of a higher priority than the running process; the ready
pracess will preempt the current process.

When the current process leaves the run state, via either transition path #2
or #3, the next ready process with the highest priority makes transition #1
and becomes the current process in the run state, If there are aultiple ready
processes with the same priority, they will be served (that is, become the
current process) in a first-in, first-out fashion. Each time a systea call is
issued, the current process returns to the ready queue and the next ready
process With an equally high priority becomes the current process.

Processes in the wait state remain there uatil the required event (for
example, reception of a message) occurs. When the required event occurs, the
process makes transition #4 to the ready state. If it happens to be of higher
priority than the current process, the process that just returned te the ready
state from the wait state would proceed to the run state immediately.
Otherwise, it would just take its appropriate prioritized position among the
other ready processes,

Creating, Deleting, and Executing Procasses

The GRiD-05 calls listed below are the basic ones needed to bring a process
into existence (Create, Fork), terminate a process (Delete, Exit), and
directly affect the execution or running of a process (Delay, Set Priority).

o OsCreateProcess - creates a new process by loading a program from a
mass storage device.

BsForkProcess - creates a process who's code is already in memory
OsExit - terminates the current process

OsDeleteProcess - terminates a “forked" process

OsDelay - suspends execution of the current process

DsSetPriority - assigns new priority level to the current process

[=2 = I~ B - I =]

Each of these calls is described in detail in the alphabetically-ordered
reference cthapter (Chapter &) of this manual.

Processor and Mesmory Management 2-3

MESBABES -- BENDING AND RECEIVING <:“ﬁ
-

GRiD-05 provides two calls that let processes transfer messages between one
another. The OsRecsive call suspends a process while it awaits a message.
The Os8end call delivers a message to a waiting process.

GRiD-DS delivers messages on a first-come, first-served bhasis. However, each
message is addressed or sent to a specific receiving process. If the
specified process is not currently waiting to receive a message, GRiD-0S holds
all messages sent to that process and delivers theam (one by one in the order
received) when the process is receiving. Note that only one message can be
received per each OsReceive call,

You can specify that a receiving process accept a message sent only by one
specified sending process or that it accept a message sent to it by any other
process.

Message Classes
Each message sent in the system also is of a user-specified class. The class
parameter is a Word; therefore, you can have up to 65,5346 different message

classes. You cap specify that a receiving process accept a message of only
one specified class or that it accept a message regardless of class.

Message Transfer Example C

The following figure illustrates the various options you have when
transferring messages between processes:

Process 7 b Process 9
Messaga Queue Message GQuaue
113 1 1le | 19
219 a 1IN
3lo{11 3|7 3

| II"Iessat;;e class T T T
Message source I
{sendina process 1.0.) l
Arrival order

This figure is a conceptualization of message queues maintained by GRiD-0S.

The system maintains a separate message queue for each process that has a

message sent to it. In this figure, GRiD-08 is holding seven messages that

have been sent but which have not yet been received by the addressed

processes: four messages for process 7 and three messages for process 9.

Let’s assume that process 7 issues an OsReceive call specifying that it will
receive a message of class 1 from any process. When process 7 issues an

OsReceive, GRiD-05 would immediately deliver message 4 from its queue that <::

2-4 GRiD-05 Reference

@

was sent by process 3, and move process 7 to the ready state. Messages 1, 2,
and 3 would not be delivered at this point because they are not of class {.

After process 7 resumes execution, it issues an DsReceive specifying that it
will accept a message of any class but only if sent by process 9, GBRiD-DS
will deliver message 2.

The send and receive calls can be issued in any sequence. That is, a process
can issue OsReceive first and then go and wait for another process to send a
message, Oor a process can issue DsSend to leave a message for a subsequent
process to pick up using OsReceive.

Passing Notes

The message sent by the OsSend call is passed by reference rather than
directly. The receiving process is given a pointer to the buffer where the
actual message is centaired. You can, however, deliver a short message more
simply by directly sending a "note® via the 0sSend call. One of parameters
for OsSend is "note", a Word that is passed by value rather than by reference.
If you have information to pass between processes that is 16 bits or less in
length, you can use this note passing mechanism to send the information,

Message Format

BRiD-05 reserves the first 16 bytes for system use and requires that these 16
bytes of a message contain all zeros. The system, however, makes no ather
assumptions about the format of messages, nor does it place any restrictions
on the message format. Since messages are passed by reference, their format
and interpretation (after the 1é6-byte header of zeros) are left entirely up to
the application.

CREATING AND UBINS SEMAPHORES

Semaphores let you synchronize the activities of multiple processes. They can
be used to sequence the execution of a number of processes, to implement rapid
responses to asynchronous events, and to provide a mechanism for mutual
extlusion of processes.

In railroad terminology, a semaphore is a traffic signal that determines
whether a train can enter a particular section of track. The semaphores
provided by GRiD-05 perform an analogous function: they can cause processes to
wait for a signal before proceeding teo execute a section of code.

There are four system calls related to semaphores.

OsCreateSemaphore - creates a semaphore
OsDeleteSemaphore - deletes a semaphore

DsWait - causes a process to wait for a signal
OsSignal - lets a waiting proctess proceed

c o Qo

%
1
(4.

Processor and Memaory Management

There can be as many semaphores in the system as you want: you're limited only (T‘\
by memory availability., Each semaphore you create is assigned a nusber j
{called the semaphore I.D, or “sid") by &RiD-0S.

You cause a process to stop at a semaphore by issuing an DsWait specifying the
semaphore pumber to wait at. The process will wait at that semaphore until
the semaphore is "not busy" (or until a specified period of time has
elapsed). The 0sSignal call is used to set a semaphore to the "not busy”
condition. As soon as the semaphore is not busy, a process waiting at the
semaphore can proceed.

When a waiting process is given the signal to proceed past a semaphore, its
passage sets the semaphore to the busy condition. This prevents any other
process that might be waiting at the semaphore from proceeding.

Any number of processes can be gueued up waiting for the same semaphore. Each
time the semaphore becomes not busy, another process is allowed to proceed.
They are granted passage in order of their process priority. Alternatively,
you can simultaneously signal all process that are waiting at a semaphore and
allow them all to proceed to the ready state.

The functions that semaphores are used to accomplish could alse be performed
using the message passing facililties of GRiD-0S, Semaphores, however,
execute much faster than message passing and are therefore a more sfficient
way of accomplishing process synchronization.

Semaphore Note Passing (:::

In addition to signalling or waiting at a semaphore, the GRiD-DS semaphore
calls let you pass a short message or "note" between signalling processes and
waiting processes. One of the parameters for OsSignal is "note”, a Word that
is passed by value to the semaphore. The note will be given to the next
process waiting at the semaphore., Interpretation of the contents of the note
is application dependent.

MEMORY MANAGEMENY FACILITIES

The mesory management facilities pravided by GRiD-08 provide rapid allocation
of memory while minimizing fragmentation which can produce small, essentially
useless, blocks of memory. The technique used by GRiD-0S to accomplish these
goals is a "“first fit" approach.

Whenever GRiD-DS receives a request to allocate a block of memory, it starts
at the beginning of its unallocated memory list and searches until it finds a
free block of sufficient size to meet the reguest. The first block that it
comes to that will fit the request is the one allocated to the process.

G

2-b GRiD-05 Reference

o

When a block of memory is freed, it is removed from the allocated list and
added to the free list, which is stored in order of increasing addresses.
freed block of memory is automatically combined, or coalesced, with any
adjacent free memory to form the largest contiguous block possible.

The GRiD-0S calls listed below are the ones related to memory management.
o0 DsAllocate - allocates from memory to a process
o OsFree - deallocates a block of memory
o OsGetSize - returns the size of a block of memory
0 OsGetMemaStatus - provides information about aemory usage

Each of these calls is described in detail in the alphabetically-ordered
reference chapter (Chapter 6) of this manual.

Processor and Memory Managesent

A

2=7

CHAPTER 3. DEVICE AND FILE MANAGEMENT FACILITIES

The GRID-05 file management system provides a uniform and straightforward
interface to all system files regardless of the type of device that a file is
associated with. Thus, you can access files throughout the system without
concerning yourself with the characteristics and idiasyncracies of devices.

Additionally, GRiD-05 provides a “virtual" file system. The system can not
only access local devices such as bubble memory and hard disks, it can also
access remote devices such as BRiD Server (via BRiDLink or PhoneLink) and G6RiD
Central (via PhoneLink). The application prograamer doesn’'t have to write any
special code to use these devices; GRiD-05 handles them transparently.

The organization of the file system is illustrated in Figure 3-1. A
hierarchical, three-level structure is utilized. System devices comprise the
uppermost level. Within sach system device are any number of directories or
"subjects", and within each subject are any number of "titles®”.

Device and File Managesent 3-1

GRiD-0S
FILE SYSTEM

DEVICE I LEVEL
| | L
D —=
= = 4= ER
Hard Fortable Bubble Printer Modem GRiD
Disk Floppa Memory Server
H
' SUBJECT LEVEL
T - T "
[F‘rograms| [Taxes] [Personal
' TITLE LEVEL '
R i _——-
GRiDNrit% GRiDPlan ﬁddresses Checkbog&
" Run Text] |Run Worksheet| | Database | | Worksheet

L 1.1)

Figure 3-1. GRID-DS File System Organization

PATHNAKEE

A file is fully identified by specifiying its "pathname”. A pathnaee defines
the route to take when accessing a filej that is, it specifies the device and
subject where a title is lecated., To a programmer, the complete pathname
schema is as follows:

‘device'subject*titie“kind“!password

Three delimiter characters are used in pathname specifications. The left
single quote or "tick" (') -- ASCII code 60 hex -- must precede device,
subject, and title names. This character is generated on the Compass keyboard
by pressing CODE-". The tilde {™} -- ASCII code 7E hex -- must precede and
follow the kind., This character is generated on the keyboard by pressing
CODE-;. The vertical bar (i} -- ASCII! code 7C hex -- must precede the
password. This character is gpenerated on the keybpard by pressing
CODE-SHIFT-;.

NOTE: These delimiter characters were purposely chosen for their obscurity so

that end-users could have most commonly used characters available when naaing
their files.

3-2 GRiD-0S Reference

O

If a kind is not supplied as part of the pathname, the system uses a default
kind of “Untyped~. The password portion of the pathname is optional. If a
file was created with a password, then the password must be included as part
of the pathnanme.

If you specify a pathname that does not begin with the tick, the systenm
assumes that the first name it encounters is the title and that you have left
off the device and subject names. The search for the title will then be
limited to the current directory, that is, to the current 'device‘'subject'.

If you provide the complete pathname including device, subject,; and title, the
search for the file will begin at the top of the virtual device tree (see
Figure 3-1) -- if the title is anywhere in the system, it will be located.

The maximum length of subject and title names is 80 characters each. Subject

and title names can consist of any printing characters (including spaces)
except the following:

’ left single ruotation mark ("tick™)

¥ tilde

! vertical bar
The maximum length of a title includes its two optional extensions of kind and
password,

DEVICES

The devices currently included in the file system are identified as follows:

Bubble Memory The nonvolatile, mass storage built into the GRiD
Compass.
bb Bit-Bucket (or "byte-bucket") is a null device used

primarily as a dummy device for testing. Data written to
the bit-bucket is accepted and then simply disappears.
Read operations directed to the bit-bucket return an
end-of-file,

ci Console Input. The keyboard of the BRiD Compass.

cn Console Output. The screen of the GRiD Compass.

Extra Floppy Disk The floppy disk in a system’'s second 21Q) disk drive,

Extra Hard Disk # system’'s second 2:01 disk drive,
Floppy Disk The floppy disk drive in a 2101 disk unit,
GPIB General Purpose Interface Bus., The IEEE-4BB8 connector

Device and File Management 3-3

on the GRiD Compass. This device provides access to all

devices that attach to the GPIB cennector.
Hard Disk 2101 hard disk (Winchester} mass storage device. <:i:
Modem The 212/103 modem built into the BRiD Compass,
Plotter The plotter currently attached to the system.

Portable Floppy 2102 portable floppy disk drive.

Printer The printer currently being used with the systes,
Serial The serial input/output port of the GRiD Lompass.
Work A temporary file used by many programs {(for example

lanquage translators, and the linker) to store
intermediate results.,

Not all of the devices participate fully in the hierarchical structure of the
file system. Only mass storage devices (Bubble Memory, Hard Disks, Floppy
Disks) can hold subjects and titles. Devices such as the printer or the GRiD
Compass screen, can have files sent to them, but the files can obviously not
be retrieved from such devices, Devices can also be remote, such as disks and
printers provided by GRiD Server.

SUBJECTS AND TITLES (::

A title (or file name, as it is sometimes called) is a name given to a file
which might consist of a program, pure data, or some combination of code and
data. Subjects (or directories, as they are sometimes called) are also
considered to be files -- but a subject is a file whose contents always
consist of a collection of titles,

A1l subject names on a particular device are unique and all title names within
a particular subject are unique. That is, you can have muitiple occurrences
of the same title (identical title name) so long as each occurrence is
associated with a different subject and you can use the same subject on
different devices., Thus, for example, a file titled DataFileA could exist on
both Bubble Memory and Hard Disk., Or DataFileA could reside on the Hard DPisk
under Subjectl and Subject2.

FILE KINDS

The file kind {sometimes referred to as file "type") extension to titles lets
you give several related files the same title while assigning them different
"kind" characteristics., Interpretation of the kind extension is left up to
the application,

You can directly examine and change the kind extensions of files using the
OsChangeExtension call described in Chapter 4.

I-4 GRiD-09 Reference

O

AN OVERVIEW OF FILE MANABEMENT CALLS

All of the BRID-0S calls that are related tp the file management system are
described in detail in Chapter &. In this chapter we will provide an overview
of the interactions and usage of these system calls.,

Figure 3-2 illustrates the relationship of the various activities perforaeed in
the file management system.

fdd Renous

L) GRiD-0S FILE SYSTEM Device

PRR—— ;
l—)nttach —I ‘T) Detach J

Dpen Llose Delete
{ |
| |

Read Flush All RenLne

| BuFfers
Hrite bet

I Stium
Seak Set

I Status

Truncate

Figure 3-2. An Overview of File Management Calls

Operating on Files

In order for a file to exist in the file system, it must be associated with a
device. Most files are associated with, and reside on disk or bubble.
However, you can also send files to printers, plotters, or the screen. Before
performing a transaction such as attach, open, read or write on a file, the
operating system must have the approprate device included in its table of
active devices. When the system is powered on, GRiD-DS goes around the systenm
and adds all devices currently connected to the active device table. If a
device is subsequently added, you inforam GRiD-~D5 of this event using the
OsAddDevice call., You can remove a device from the active device table, in
order to free the memory used by its driver, using the OsRemoveDevice call,

Once the appropriate device is in the system, a file is connected to the
system with the OsAttach call., If the file does not already exist, it is
created by OsAttach. After a file is attached, you must open the file (using
OsOpen! before you can perform any activity on the file.

Device and File Management 3-35

GRiD-08 uses the two-step sequence of attach/open to increase efficiency. The
attach locates the file in the system but allocates no buffer space.

Allocation of buffer space occurs only when a file is opened. Attaching a (ﬂj:
file is a relatively time consuming process but uses little memory space.

Opening a file is quite fast but consumes more memory. Thus, a program can

keep many files attached but, by having only one file at a time open, wastes

no buffer space. When the program needs to access a file, that single file

can then be quickly opened.

After a file is open, you can access the contents of the file using the
OsRead, OsWrite, DsSeek, and OsTruncate calls. These calls are the ones that
actually access the contents of files. They let you read the contents of a
file (OsRead}, alter the contents of a file (DsWrite), change the point of
access within a file (0OsSeek), and delete a portion of a file.

You can terminate file access using OsClose and then reopen the file without
reattaching it. VYou can sever the connection to a file with OsDetach or you
can detach and delete the file from a device with OsDelete.

You can change the title of a file using the OsRename call and you can examine
and alter the systea characteristics of a file using the 0OsGetStatus and
ODsSetbStatus calls. The OsFlushAllBuffers call writes the tontents of
temporary system buffers in memory out to the device where the file is
permanently stored,

Note that the OsChangeExtension call does not actually operate within the file
system. It is really just a string function that changes a string which

contains the pathname of the file; the extension of the file in the file C
system remains unaltered,

Current File Position Marker

Eack open file has a "current file position" marker associated with it. When
a file is first opened, this marker is at the first byte (byte zero) of the
file. Whenever you access a file, you specify the number of bytes that are to
be accessed. As part of that access, the current file position marker is
moved so that it is just beyond the last byte accessed and thus indicates the
first byte available to a subsequent access. VYou can directly mave the
current file position marker with OsSeek which does not read or write any data
in the file. Note, however, that you can not insert data in the middle of a
file. If you move the current file position marker to somewhere within a file
and then perform a write, data will be written over pre-existing data.

Operating on File Directories
BRiD-0S lets you read the contents of directories just as you do with any
other file., The only difference is that instead of reading a byte at a time,

one directory entry at a time is read.,

To prepare a file to be read in "directory mode® you simply use the OsAttach
call specifying a directory access mode. The system automatically attaches

C

3-& GRiD-05 Reference

the specified file and also performs an OsOpen preparing the file for
subsequent read or seek operations. DObviously, the file being accessed in
this mode should be a directory (a file with a Kind of “Subject™) for these
operations to be meaningful,

NOTE: The password assigned by GRiD-DS to all directory files is "GRiDiRG".

Now, OsRead operations or DsSeek operations performed on the file, instead of
treating bytes as their object, treat each directory entry as the object.
Thus, a read with a length of three would return three directory entries
{either partial or complete entries) instead of three bytes of data.

You can read either a partial directory entry containing just the name of the
directory file, or the complete directory entry giving all the information
about the characteristics of a file. The format for partial directory entries
is as follows:

PartialDirEntryType = RECORD

dummy : ARRAY (1,.B] OF Ehar;

length 3 Byte;

name : ARRAY [1..1] OF Char;

END;

Note that the size of the name portion of the entry is defined by the length
parameter, The name length is variable and can be up to 80 bytes long. 1If
information beyond the name of a directory entry is required, you can read
complete directory entries whose format is as follows:

CompleteDirEntryType = RECORD
dummy : ARRAY [1..B1 OF Char;
length : Byte;
name : ARRAY [1..B80) OF Char;
creationDate : ARRAY [1..11) OF Char;
unused! : Word
lastMopdDate : ARRAY [1..111 OF Char;
expirationDate : ARRAY [1,.11) OF Char;
upused?2 : ARRAY [1,.253 OF Char;

usesB087 : Boolean;
versionl : Byte;
version2 : Byte;

unused3 : ARRAY [1..15] OF Chary

version3 : Byte;

propertylLength: Longlint;

unused4 : ARRAY [1..281 OF Char;
END;

When you read a complete directory entry, the information returned will be of
a fixed length since all fields in each record are filled out to their maxioua
length. For example, the name returned will always be BO characters in
length. The significant or used portion of the name field will be indicated
by the length parameter; the rest of the name field will be filled out with
blanks to occupy the full BO characters of the field.

Device and File Management 3-7

CHAPTER 4. WINDOW GRAPHICS

The window graphics routines are a set of procedures that let applirations
display text and graphics on the screen,

With these routines, you can

o Create an application that runs completely independent of the physical
screen size or characteristics,

o Draw, erase, or invert text characters, pixels, lines, and rectangles.

o Clip the display within a clipping rectangle so that data outside the
rectangle is not displayed.

o Perform bit-by-bit scrolling within a display window, to change the
display rapidly.

o Establish alternate windows and pass data from one window to another.
BETTING UP WINDOWE

A window defines an area of the screen (often the entire screen) that can
subsequently be referenced by other graphic calls to display information
consisting of rectangles, text, lines, and pixels. BRiD-0S lets you maintain
more than one window at a time. You can have more than one window image in
memory at a time and switch from one window to another,

Once you define a window, only those portions of information sent to that
window that do not extend beyond the window boundaries are displayed on the
screen -- the window "clips® information that would be outside of the defined
window.

f window is defined using the calls described below.

Window GBraphics §-1

o WinInitDefaultWindow -- Clears the window and resets the clipping

rectangle. ™
o MWinSetWindow -- Sets the window to a specified size. (::;
o MWinFrameWindow ~- Draws a frame around the window
o WinEraseWindow -- Erases the contents of the current window.
o WinScrollWindow -- Scrolls the entire window a specified distance and

direction.

0 WinBetWindowExtent -~ Returns the size of the current window.

ALTERNATE WINDOWS

* There can only be one window at a time displayed on the screen. This window
is called the "current window". 'GRiD-08, however provides calls that let you
maintain multiple windows in memory, There are two reasons why you might want
to have alternate windows: to redirect the contents of one window to anaother
window or to convert screen image files stored in BRiD’'s format to the format
needed by a screen other than that of the Compass coaputer,

The atternate window calls make the window routines compatible with other
computer systems regardless of the screen size or formats of screen image data
as stored in memory. The calls also let you maintain multiple windows in
memory and bring window contents to the screen or dismiss them from the screen
to dispiay other windows.

A window is established in memory with the WinAllocateWindowMemory call. This

call specifies the characteristics of the window such as format, size,

bits/pixel, and so on. Each program has a "current” window where the (:::
program’s calls are directed to perform such cperations as drawing lines and
displaying characters.

A program establishes alernate windows with separate WinAllocateWindowMeamory
calls for each window and specifies which window is the current window with
the HinSetAlternateWindow call.

You tan copy information from one window in memory tp another with the
WinCopyRemoteRectangle call. This call can place the entire contents or any
portion of one window into another window.

Applications that use screen image files or that need to manipulate the screen
directly must use alternate windows in order to work with computers having
screen- chatacteristics that differ from those of the Compass computer. For
exaaple, a screen image stored on disk or in bubble memory must first be read
into a window that is specified as being in BRiD format. You can then copy
the contents of that window (with WinCopyRemoteRectangle) to cne specified as
being in host screen format so that the image will be properly displayed.

The calls used with alternate windows are as follouws:
o WinAllocateWindowMemory -- Allocates memory for an alternate window.

o WinSetAlternateWindow -- Causes all subsequent window calls to operate on
an alternate window.

a

4-2 GRiD-0S Reference

O

o MWinCopyRemoteRectangle -- Copies a rectangle from one window region to
another and converts display data (if necessary) to the format required by
the destination window,

CLIPPING RECTANBLES

Within each window, you can further define rectangular areas that have
specific characteristics. You can have multiple rectangles within a single
window and can manipulate all of the pixels in each rectangle separately from
other rectangles in the window. A rectangle can &lso clip information at its
boundaries just as a window does. The calls that operate on rectangles are as

- tollows;
o MWinSetClip -- Sets a clipping rectangle within a window.
o WinResetClip -- Resets the clipping rectangle to the entire window.
o WinEraseRectangle -- Erases the contents of a rectangle.
o WinlnvertRectangle -- Inverts the contents of a rectangle.
o HWinCopyRectangle -- Copies one rectangle into another.
o WinScrollRectangle -- Scrolls a rectangle a specified distance and

direction.

TEXT GRAPHICSE

These routines complete characters within defined window locations. For a
further discussion of character formation, see the discussion of character
fonts that follows.

o WinDrawChar -- Draws a character at a specified location in the window.

o WinEraseChar -~ Erases a character at a specified location in the window.

o WinInvertChar -- Inverts a character at a specified location in the window.
o WinDrawChars ~-- Dutputs a character string to the sereen at a specified

location in the window.

CHARACTER FONTE

The character spacing used when displaying text on the screen depends on which
font is the "current® font. Tweo calls are used to handle fonts: WinLoadFont
loads a specified font into memory and WinSetFont determines which of the
currently loaded fonts is to be the current font used to display characters on
the screen. You can determine the characteristics (character size, spacing,
and so on) of a font by examining the FontInfoRecord associated with each font
(see WinSetFont) or by using the functions Baseline, Charheight, Charwidth,
and Lineheight.

The standard (built-in) font contained in ROM for the Compass coaputer has the
following characteristics (values listed are in number of pixels):

charWidth (= &)
charHeight {= B)

Window Graphics §-3

lineHeight (= 10)

baseline {= 7) ("N
A

Figure 4-1 illustrates how the dimensions of font characters are measured. o
Note that there are other fonts available besides the built-in font depicted
in this figure.

T EEREERER
|
| ENER
basel_;ine BE Bl | B
| 0 |
B . . - - charHeight
=g
v EREEREN B l
; charWidth .n.
I =6 |

lineHeiaht = 10 pixels
{one pixel above and below
each character)

&

Figure 4-1, Built-Ia Character Font Dimensions

Even though each character displays as 5 pixels across, the actual font is 6
pixels wide. There is a blank pixel at the right edge of each character thus
leaving a single pixel space between characters. While each character is
eight pixels high, the line height is 10 pixels altogether, which leaves a two
pixel vertical spacing between lines of text.

The value lineHeight represents character height plus the amount of space
between lines. Each line has a one-pixel space above it and below it. The
value baseLine represents the distance from the top of the character to the
line connecting the hottom of the capital letters.

o MWinLoadFont -- Loads a font file into memory.
o MWinSetFont -- Sets a previously lpaded font as the current font,
LINE GRAPHICS

These routines let you manipulate lines within defined windows. Lines are
defined by defining their two end points {(pixel coordinates).

e,

O

4-4 BHRiD-05 Reference

o WinDrawlLine —- Draws a line within the window.
o WinEraselLine -- Erases a line within the current window,
o HWininvertLine -- Inverts a line within the window,

PIXEL GRAPHICS

These calls let you manipulate a single pixel within a window. Note: usually,
the Line graphic calls can be used to accomplish detailed graphics., However,
the pixel graphic calls are provided to give you completely detailed control
of the display.

o MWinDrawPixel -- Draws a single pixel at a specified coordinate,
o WinErasePixel -- Erases a single pixel at a specified coordinate.
o MWinlInvertPizel -- Inverts a single pixel at a specified coordinate.

CODRDINATE SYSTEM

The window calls draw pixels, tharacters, and lines on the screen within a
window coordinate systea. All coordinates are ultimately designated with
absolute pixel locations on the screen by the system. However, almost all
window routines use relative pixel coordinates that are based on the current
window instead of absolute screen locations. Each window has its own
coordinate system with 0,0 at its top left.

Each coordinate refers to one pixel. Thus, drawing a line from (0, 0) to (0,

1) will cause two pixels to be displayed, Drawing a line from one pixel to
itself causes a single pixel to be displayed. ’

DATA BTRUCTURES
TYPE Point = RECORD x,y: Integer END;
Point is a record of x,y pixel coordinates which are either absolute or

relative to the window. Points can represent two-dimensional positioning
offsets or window dimensions, as well.

* TYPE Rectangle =
RECORD topleft, extent: Point END;

Rectangle is a record of two Points. The variable topLeft defines the pixel
coordinates of the upper left corner of a rectangle. The x coordinate of

extent defines the width of the rectangle in pixels; the y coordinate of
extent determines the height of the rectangle.

*TYPE BDirection = (up, down, left, right);

Window Graphics §-5

Defines a direction for scrolling rectangles and windows

display.

+ TYPE
WindowFormat = (s

WindowRegion

creenfFormat, GRiDFormat);

RECORD

format : WindowFormat;
width : Wordj

height : Word;
bufLength : Word;

buf : Pointer;
bitsPerPel 1 Byte;
bytesPerLine : Wordj

END;

foraat -- GRiD format
width -- the width of
height -- the height o

or host screen format.
the window in pixels.
{ the window in piuels.

on the screen <:f\

buftLength -- the size, in bytes, of the buffer allocated by the system for

this window.

buf -- a pointer to the first byte of the buffer allocated for this window.
bitsPerPel -- the number of bits-per-pixel used for the window. For BRiD

format windows, the

re is one bit per pixel.

bytesPerLine -- the number of bytes used by the system to store one horizontal

line of pixels for

4-6 BGRiD-0S Reference

the allocated window.

@)

£

CHAPTER 5. CONSCOLE ROUTINES

These routines give you direct access to the screen and keyboard of the
Compass Computer. All of the routines that cutput information to the screen
operate within the current window (see Chapter 4). They differ froms the
related window graphic routines such as WinDrawChar because they treat the
window as a virtual console. Thus, while characters output by WindrawChar
will be clipped when they reach the window or clipping rectangle boundaries,
characters output by the consple routines will wrap to the next line within a
window when a boundary is reached. All GRiD application programs display
text on the screen using the window routines.

The following three console routines are useful for obtaining input froa the
Compass keyboard:

ConKeyPressed Tells you if any key on the keyboard has been pressed.

ConCharln Waits for one character to be typed on the keyboard and
then returns that character.

ConPeekChar Returns the first character in the keyboard gueue.

The remaining console routines are provided primarily to be compatible with
the interface requirements of the compilers and other Intel development tools.
They are rarely used within SRiD applications but can be handy during
debugging.,

ConDeiCsr Turns the small cursor character "_" on ar off.

ConResetDisplay Clears the screen and displays the cursor character at the
top, left hand position of the window.

ConMoveCsr Moves the cursor to the specified x,y character position on
the screen.

Console Routines 9-1

ConCharOut

ConLinelut

ConLineln

ConHexOut

GetConsoleState

Outputs the supplied character to the screen at the current
cursor pesition,

Outputs the nusber of characters specified by length to the
screen,

Inputs the nuamber of characters specified by length from
the keyboard.

Outputs the supplied hexadecimal value to the screen at the
current cursor position.

Returns information describing the current state of the
console, such as cursor location and last character printed
to the screen.

5~2 GRiD-05 Reference

O

CHAPTER 4. GRiD-06 PROCEDURES AND FUNCTIONS

This chapter lists all of the procedures and functions provided by BRiD-08 in
alphabetical order. For discussions of concepts and interactions of these
calls, refer to the appropriate chapter earlier in this manual. This chapter
simply lists the calls in alphabetical order and provides a comprehensive
description of each call for maximum ease-of-use for reference purposes.

Procedures and Functions b-1

e

Baseline

FUNCTIDN BaselLine : Integer; (ij:
Purpose and Operation

This routine returns an integer that is baseline of the current font. The
baseline is the distance from the top of a character to the line where the
bottom of capital letters are formed. Baseline is also the line where the tip
of the cursor is positioned.

¥ REEEEDN
|
] HENEE
baselLirne
]]]
[] - - . . t:harHBeigm
v+ BB EER B l
chariidth .u-
=6 rl
lineHeight = 18 pixels
(one pixel above and below <
each character)

CharilHelght

FUNCTION CharHeight : Integer;
Purpose and Operation
This routine returns an integer that is the height {in pixels) of the

characters in the current font. See the BaseLine function for a figure
illustrating CharHeight.

6-2 GRiD-0S Reference

O

Charkidth

FUNCTION CharWidth : Integer;
Purpose and Operation

This routine returns an integer that is the width (in pixels) of the
characters in the current font. See the BassLine function for a figure
illustrating CharWidth.

ConCharliln

FUNCTION ConCharlIn: Char;
Purpose and Operation
This routine waits for one character to be typed on the keyboard and then

returns that character. (See Appendix A for a table showing the values
returned by each keystroke.)

This routine actually returns a i16-bit word. The low order byte contains the
B-bit value representing the key that was pressed. The high-order byte of the
word provides the following additional information from the keyboard:

Bit # Interpretation

12 Set toe 1 if a repeated character

13 Set to 1 if SHIFT key also depressed
14 Set to 1 if CODE key also depressed

15 Set to 1 if CTRL key also depressed

1f you want to receive this additional information, you must change the
ConCharIn function declaration {in the include file ConPas.Inc) to "FUNCTION
ConCharlIn : HWord;" in order to have the full 1é6-bit value returned.

ConCharQut

FROCEDURE ConCharQut (ch: Char);
Purpose and Operation

This routine outputs the supplied character to the screen at the current
cursor position.

Procedures and Functions &=3

ConDerCsr
PROCEDURE ConDefCsr (on: Boolean); (fjj
Purpose and Operation

This routine turns the small cursor character "_® on or off., If the parameter
“on" is True, the cursor will be displayed; if False, the cursor will not be
displayed,

ConHexCOut
PROCEDURE ConHexOut (num: Word);
Purpose and Dperation

This routine ocutputs the hexadecimal number specified by num to the current
cursor position, ;

ConKeyPressed
FUNCTION ConKeyPressed: Boolean;
Purpose and Operation . (:::
This routine returns a Boolean True if any key on the keyboard has been

pressed. If you want to determine which key is depressed, rather than just
the fact that a key was depressed, use the function ConCharln or ConPeekChar.

4-4 BRiD-D5 Reference

@)

l.

>

Caonilineln

FUNCTION Contineln (VAF buffer: Bytes:
maxLength: Word): HWord

Purpose and Operation

This routine inputs characters from the kevboard and places them in the
designated text buffer, The keyboard entry is terminated either when the
number of characters specified by maxLength has been entersd or when the
RETURN key is pressed. The fun:ztion returns a word indicating the actual
number of characters returned {including the terminating CR/LF if less than
maxLength characters read..

Parameters
buffer -- the text buffer where the characters are to be stored.
maxLength -- the maximum number of characters to input.

ConlinelOut

PROCEDURE ConLineOut (VAR buffer: Bytes;
length: Word};

Purpose and Operation
This routine outputs the number of characters specified by length to the

window. If the window or clipping rectangle bnundary is reached, the
characters wrap around to the next line.

Parameters
buffer -- the text buffer where the characters are to be output are stored.
length -- the number of characters to output.

ConMoveCsr
FROCEDURE ConMoveCsr {x, y: Byte)j
Purpose and Dperation
This routine moves the small cursor character “_" to the specified x,y
character position (not pixel position} in the current window: 0,0 is the
upper left corner.

Parameters

%,y -- the character row and column position relative to your window (not the
screen) where the cursor is to be positioned,

Procedures and Functions &-3

ConPeekChar
FUNCTION ConPeekChar: Charj C
Purpose and Operation
This routine returns the first character in the keyboard queue. If the queue
is empty, this routine waits until a key is pressed. (See Appendix A for a
table showing the values returned by each keystroke.)
This routine actually returns a t6-bit word. The low order byte contains the
B-bit value representing the key that was pressed, The high-order byte of the
. Wword provides the following additional information froe the keyboard:

Bit # Interpretation

12 Set to 1 if a repeated character

13 S5et to 1 if SHIFT key also dapressed
14 Set to 1| if CODE key also depressed
15 Set to 1 if CTRL key also depressed

If you want to receive this additional information, you amust change the
ConPeekChar function declaration {in the include file ConPas.Inc) to "FUNCTION
ConPeekChar : Word;® in order to have the full 1é4-bit value returned.

ConResetDisplay
PROCEDURE ConResetDisplay; (:::

Purpose and Operation

This routine clears the current window, moves the small cursor character
to the top, left hand position (0,0} of the window, and turns the small cursor
character "_" on,

LineHeight
FUNCTION LineHeight : Integer;
Purpose and Operation
This routine returps ap integer that is the height (in pixels) of the

character lines {(character height plus the spacing hetween lines) in the
current font., See the Baseline function for a figure illustrating LineHeight.

b-6 GRiD-05 Reference

GetlonsoleState

FUNCTION GetConsoleState : ConsoleStatePtr;

Purpose and Operation

This routine returns a pointer to a record describing the curreat state of the
console. The organization of the conscle state record is as follows:

ConsoleStateType = RECORD
xLoc 1 Integer;
yLoc ¢ Integer;
eState : Byte;
stroll : Byte;
curChar : Byte;
upperFiag : Byte;
NMIFlag : Byte;
END;

ConsoleStatePtr = “ConsoleStateType;

ConsoleStateType Record Fields

#Loc,; ylLoc -- the current cursor location {see ConCharflut} indicating where
the last character was drawn on the screen,

tState -- cursor state, This is | if cursor is on and 0 if cursor is off.

scroll -- an internal variable used by the window routines.

curChar ~- current character, The character last printed to the screen.

upperflag -- internal flag indicating whether the upper case keylock
(BHIFT-ESC) is set on.

NMIFlag -- an internal variable used by the window routines.

Procedures and Functions &=-7

OsAddDevice

PROCEDURE OsAddDevice (VAR pathName : Bytes; (Tﬁj
VAR name : Bytes; :
VAR entryPoint : Bytes;
intAddr : Byte;
mass : Boolean;
mode 3 Byte;
VAR error : HWord);

Purpose and Operation

This call adds a device to the Active Device Table maintained by GRiD-08. The
device can then be accessed by programs just as though it were another file.
Thus, this call is the equivalent of "activating® a device from the command
line (see the Program Development Guide for a description of the Activate
progras). This call can add a device that is in a file, or that is linked
into a program or can make a second copy of an already activated device. For
a detailed discussion of how to use this call, refer to GRiD documentation on
device drivers.

Paraneters

pathName ~- the pathnaame (formatted as a ShortString) of the file containing
the device driver or the name of device already listed ia the Active Device
Table, depending on the setting of bit 0 of the mode parameter. If the
driver is linked into the currently running program, this parameter should (::
be NIL.

name -- the actual name {(formatted as a ShortStriny) of the driver as it will
be listed in the Active Device Table. (Note: the specified name should not
have a backquote (') in front of it.) If this parameter is NIL, the title
part of the pathName parameter is used as the device name.

entryPoint -- the name of the device driver main procedure if the driver is
linked into the currently running program. 1In this case, the pathNaame
parameter is ignored. If the driver is not linked into the program, the
entryPoint parameter should be NIL.

intAddr -- the interface address (usually, the device's GPIB address. [f this
device is not a GPIB device, set intAddr to NULLBYTE (OFFh).

mass -- a Boolean that, if TRUE, indicates that the device being added is a
mass storage device such as a hard disk, floppy disk, or bubble.

mode -- the bits of this Byte determine various attributes of the device
being added as follows:

Bit &

0 -- driver location., If set to 0, the pathName parameter specifies
the device driver location. 1f set to 1, the pathName parameter is
the name of a device already in the Active Device Table.

1 -- visible/invisible. If set to 0 and the mass parameter is TRUE,
the device will appear on active device list and be displayed on
the File form. If set to ! or if the mass parameter is FALSE, the
device will be invisible.

2 -- local/remote. 1f set to 0, the device is local. If set to 1,

.

4~8 GRiD-05 Reference

~ O~ N

the device is remote such as GRiDLink or Phonelink.

-- mass storage. If set tp 0, indicates that the device is not a
mass storage device, If set to !, indicates a mass storage device
such as hard disk.

~- server, If set to 0, indicates that the device is not a network
server. If set to 1, indicates that device is a network server
such as BRiDLink or PhonelLink.

-- reserved for system use: always set to 0.

-- reserved for system use: always set to 0.

-- search. If set to 0 and if the mass storage bit (bit 3) is set
to 1, indicates a searchable device. GRiD-05 may search this
device for an appropriate application program, such as
GRiDKrite™Run Text™ to use with a file of Kind “Text™. If set to
1, the device will never be searched.

Procedures and Functions -9

OsAllocate

FUNCTION OsAllocate (length : Wordj
VAR error : Word) : Pointer;

@

Purpose and Operation

This call assigns or allpcates a memory block of a specified number of bytes

to the calling program. The memory block can be of any size from one byte to

b4k bytes. If more than 64k bytes are needed, additional DsAllocate calls

must be issued., The allocated block will be the lowest addressed segment that
. satisties the regquest,

NOTE: Since there is no inherent memory protection, the prograa must ensure

that it does not alter any memory outside of the alloecated block. When your

program exits, any memory allocated to the program is freed by the systen.

Parameters

length -- a Word specifying the nuaber of bytes of memory to be allocated. A
length of zero implies a request of 64k bytes.

Function Return

block -- a pointer to the first bhyte of the allocated block of memory. NOTE:
If you call this function from Pascal, you must define Pointer to be a
pointer to whatever kind of variable you are trying to allocate space for. (Z::
For exasple: Type Pointer = “Array[!..2000] OF Hord;

Possible Errors

Out of memory (error 2).

e

&-10 GBGRiD-05 Reference

OsAttach

FUNETION ODsAttach (VAR pathName Bytes;
fileMode Byte;
VAR reserved : Bytes;
accessMode : Byte;
VAR erraor : Word}) : HWord;

Purpose and Operation

This call establishes a connection to the file specified by pathNasme and

* returns a connection aumber uhich other calls use to refer to the file.

OsAttach will establish a connection to ap existing file and can also create a
new file and connect to that new file.

A connection is always dedicated toc a specific type of access: read only,
write only, update (read and write), partial directory read, or coaplete
directory read. 1f a connection is for a write or update access, there can be
onrly one active connection to the file. There can be multiple active
connections to the file, however, if all of the connections are for read only
access,

The maximum number of active connections to all files in the systee is limited
only by available memory.

If the access mode is for a partial directory read or coaplete directory read,
the system not only attaches the file, it also opens the file in preparation
for subsequent read or seek operations.

NOTE: See Chapter 3 for a description of directory entry formats.

Paraneters

pathNase -- device-subject-title-kind-password of the file to be attached.
This parameter should be formatted as a shortString.

fileMode -- specifies whether the connection is to an existing file or new
file as follows:

1 = old file. The file must already exist. If the file does not
exist, a file-not-found error is returned. (The two directory-type
accesses work only with old files.)

2 = update file. If the file already exists, that file is

attached., If the file does not exist, it is created and then
attached.

3 = new file., I+ the file does not exist, it is created and
attached. If the file already exists, the contents of the existing

Procedures and Fupctions 5-11

version are deleted and this new empty file is attached.

reserved -- reserved for future system use, 5Set to zero using a "dummy" (:T“
variable, N{TE: See "Special Note" at the end of this description. >
accessMpode -- a byte defining the type of access that will be permitted for

this attachment to the file:

read only actess,

write only access.

update (read and write) atcess.
reserved for system - do not use.
partial directory resd atcess.
complete directory read access.

o o i R -
nononon oo

Function Return

conn -- connection number {data type Werd) that can be used in subsequent
file-related calls to refer to this file,

Possible Errors

Qut of memory (lerror 2).

Password protected (error 27).

File does not exist (error 33},

File cannot be shared (error 40),

Device full {error 41). \
Bad parameter {(error 220). (::
Device not active (error 227). .

finy disk errors (errors 101 - 108),

Bpecial Note

The "reserved” parameter was formerly (version 3.0.0 and earlier) used to
specify the file password. In version 3.1.0 and later, the password must be
specified as part of the pathName parameter. Programs using the old format of
this call must put the password in the pathname using the OsChangeExtension
call. Programs written prior to version 3.1.0 do not have to be modified if
they do not explicitly manipulate passwords.

6-12 GBGRiD-DS Reference

OsCallDriver

PROCEDURE (OsCallDriver (VAR pathName : Bytes;
level : Byte;
request : Word;
VAR paramList : ParamlListType;
VAR error : Word;

Purpose and Dperation

This procedure is used from within device driver shells, Application programs
would not normally call this procedure. A descripton of how to write device
drivers and how to use this call within drivers is beyond the scope of this
document, Refer to GRiD documents describing device drivers for details on
the use of this call. ’

Parameters

pathName -- the pathname (formatted as a ShortString) of the device to which a
request is being sent (typically, 'serial or ‘'gpib)}.

level -~ a value of | specifies that this is a low-level driver (for a mass
storage device such as bubble memory, hard disk, or floppy disk}), a value
of 0 specifies that it is a file level driver {for devices such as
printers, Phonelink, or serial port).

request -- a word defining the specific activity {such as open, read, write)
that the device driver is to perform on the device. Refer to the “Guide to
BRiD Devices and Device Drivers® for details.

paramList -- a list specifying device characteristics in the following foreat:

ParaalListType = RECORD
conn ; Word;
buffer : Pointer;
position : Longlnt;
length : Word;
mode : Byte;
numBuf ; Byte;
intAddr : Byte;
overflow 1 Pointer;

END;

Procedures and Functions &=-13

OsChangefExtension

PROCEDURE DsChangeExtension (VAR pathName : Bytes; <:j:
extNum : Byte;
VAR extension : Bytes;
VAR errar : Word);

Purpose and Operation

This call lets you examine or change the filename extension (kind or password)
on a pathname string while leaving the rest of the pathname unchanged. This

- call is just a string function. You pass it a string representing a pathname
and it returns a portion of this 'string or modifies the string (depending on
what you request with the extNur parameter). Note that this call has no
effect whatsoever on the file system or the actual titles of files.

If the pathname already has an extension, then it will be changed to the new
one that you specify. If there is currently no extension, the new one will be
appended to the file name.

The maximum length of a file name is B0 chararters, including any extensions.
Since a new extension can increase the length of the file name, you must make
sure the pathpamee buffer is large enough to hold the new name and also ensure
that the maximum length is not exceeded.

Parameters (. :

pathName -- references the file whose extension is to be changed. This
parameter should be formatted as a short string.
extNum -- specifies which extension (kind or password) is to be examined or
changed as follows:
1 change kind extension

2 = reserved for system use

3 = change password extension

41 hex = query current kind extension

42 hex = reserved for system use

43 hex = query current password extension

Bl hex = change kind only if none currently appended

B2 hex = reserved for system use

83 hex = change password only if none currently appended

extension -- the actual extension to be appended or the current extension
returned by a query. This parameter should be formatted as a short string.

Possible Errors

Bad parameter (error 225}.

6-14 GBRiD-0S Reference

OsClose

P,

= PROCEDURE OsClose (conn : Word;
VAR error : Word);
Purpose and Operation
This call closes a file that was previously opened. The contents of all
buffers assigned to the file are written to the file and all memory allocated

to the file released to the systea.

- The file remains attached and can be re-ppened without doing another OsAttach.

Parameters

conn -- connection number (data type Word) that specifies the file that is to
be closed.

Possible Errors

File not open (error 203).

Bad connection {error 221}.
All disk errors {101 - {0B).,

Procedures and Functions 6-15

OsCreateProcess

FUNCTIDN OsCreateProcess (VAR commandlLine : Bytes; (:::
priority : Byte;
uses8087 : Boolean;
VAR error : Word) : Word;

Purpose and Operation

This call creates a new process with the parameters specified., The process
being created is loaded into memory from mass storage -- bubble, disk, etc.
(as contrasted with a forked process, which must already be in memory) and is
created in the ready state, Thus, if the created process happens to be the
highest priority ready process, it would begin executing immediately.

NOTE: After a process has been created, it can only be terminated by issuing

an OsExit call -- itself. It can not be deleted by another process.
Paraneters
commandline -- the buffer containing the command to run and any parameters

required for that command. This parameter is NOT formatted as a

shortString. The buffer contents should be just as though you entered a

comnmand via a command line. For example, "GRiDWrite pathName". You must

end the command line with a carriage return. NOTE: the file that is to he
created as a process is expected to have a Kind of *Run™ or “Run fileKind™

(for example, “Run Database™}. 1If no kind is specified in the commandlLine,

the system supplies a kind of “Run™. If no device ar subject is specified, (::
the system will first look in the currently prefixed subject and then in

the Programs subject of the currently prefixed device.

priority -- a value in the range of 0 to 255 indicating the priarity of this
process. The highest priority is 0, the lowest is 2535,

usesB087 -- if this Boolean value is true, it indicates that the 8087
numerical data processor is used by this process. This informs GRiD-08
that the contents of the B0B7 registers must be saved whenever the process
leaves the run state.

Function Return

pid -- process identification number (data type Word) that can be used by
other system calls to refer to this process.

Possible Errors

Out of Memory lerrpr 2) if insufficient memory is available to load this
process,

All file system errors,

All disk errors (101 - [0B},

All GPIB errors.

b-16 GRiD-DS Reference

f\ OsCreateSemaphore

5
FUNCTION OsCreateSemaphore (VAR error : Word) : Word;
Purpose and Operation
This call creates a semaphore for use by system processes. This function
returns a word that is the semaphore number or semaphore ID. Processes use
this ID number (sid) to refer to the semaphore when issuing OsWait and
0sSignal calls.,
When a semaphore is created, it is initially set to the busy state. If you
want the semaphore to initially be in the not busy state (for example, if
you're using it for mutual exclusior), you must issue an OsSignal to the
semaphore. ’

Function Return

sid -- the semaphore ID assigned to the semaphore created.

Possible Errors

Out of Memory (error 2) if there is insufficient memory available for storage
of the semaphore.

Procedures and Functions 6=-17

OsDecodeException

PROCEDURE DOsDecodeException (code ; Word;
VAR execption : Bytes);

Purpose and Operation

This call converts a numerical error code generated by the system to a more

meaningful string of up to 80 ASCII characters. (NOTE: the text comprising

the character string associated with each error code is in the file named

@SystemErrors™text™. This file must be under the programs directory of the

currently prefixed device.). The resultant string can provide a more useful
- error message to users and operators of the Compass.

Parameters

code -~ the system error number that is to be decoded. See the
BSystemErrors*Text™ file for a numerical listing of the error numbers and
the message strings that will be returned.

exception -- a buffer (which should be formatted as a shortstring) where the
error message will be returned,

6-1B GRiD-DS Reference

O

OslDelay

PROCEDURE OsDelay (timelLimit : Word);
Purpose and Operation

This call suspends execution of the current process by placing it in the wait
state for a specified time limit., The process will remain in the wait state
until the specified time limit has expired. It will then proceed to the ready
state where it assumes its prioritized position among the other ready
processes.

" If you specify a time limit of zero, the process will leave the run state, go

to the wait state, and then proceed immediately to the ready state. Thus,
processes of equal priority could use this mechanisa to ensure that they all
get their turn as the current process.

Note that a process can only delay itself (there is no process ID parameter to
let you specify another process).

Parameters
timeLimit -- a word specifying the number of milliseconds {(rounded up to a

multiple of 10 milliseconds! to suspend the current process. Thus, you can
specify delays ranging from zero toc 5,540 milliseconds.

Procedures and functions 6-19

—

OsDelete

@

PROCEDURE OsbBelete {(conn : Word;
VAR error : Word);

Purpose and Operation
This call deletes the specified file from the file system. The file sust
currently be attached for either a write access or update access and it amust
also be aopen.
An OsDetach is performed automatically after the file is deleted since the
connection is meaningless after the file is deleted.
Paraseters
conn -- connection number (data type Word) that specifies the file that is te

be deleted.

Pogsible Errors

File does not exist (error 33),
All disk errors (101 - 10B).

4-20 GRiD-0S Reference

£

g
&

OsDeleteProcess

PROCEDURE DsDeleteProcess (pid : Word;

VAR error : Word};
Purpose and Operation
This call deletes the specified forked process from the system. A process can
be deleted regardless of which state it is in., (NOTE: OsDeleteProcess tannot
be used to terminate a process that was created with DsCreate: OsExit call
must be used for that purpose.)

Paramaeters

pid -- process ID, a word identifying the forked process to be deleted.

Possible Errors

Process does not exist (error 251).

OsDe leteSenmaphore

PROCEDURE OsDeleteSemaphore (sid : Word;
VAR error : Word);

This call deletes the specified semaphore from the systeam. Any process that
issues an DOsSignal or OsWait to this semaphore will receive a Semaphore does
not exist error. Any processes that are actually waiting at this semaphore
when it is deleted, will proceed to the ready state and have a Semaphore does
not exist lerror 252) error returned.

Parameters

sid -~ semaphore identification number that was returned by GRiD-0S5 when the
semaphore was created,

Possible Errors

Semaphore does not exist (error 252).

Procedures and Functions &-21

O=sDetach <j5
-

PROCEDYURE ODsDetach (conn @ Wordj
VAR error : Word);

Purpose and Operation
This call severs a file connection that was established previously by
OsAttach. All system resources being utilized for the connection are released

and the relationship between this conhection and a pathname is severed.

I+ the file has not been closed, an OsClose will automatically be performed by
the system.

Parameters

conn -- connection number (data type Word) that specifies the file connection
that is to be severed. CAUTION: Passing an uninitialized value to conn
can result in the 05 trying to access memory mapped 1/0 apce -- this could

hangthe system.

Possible Errors
Bad connection {error 221) if the specified connection number does not exist. {E.'

All disk errors (101 - 108)

6-22 GRiD-05 Reference

OsExit

P

- PROCEDURE OsExit (code : Word);

Purpose and Operation

This call is used to exit a program by causing the current process to delete
itself. When a process exits or is deleted, all of its resources, such as
memory or active file and device connections are returned to the systean.

Any processes waiting for a message from this process will receive the
contents of the code parameter (as the "note" parameter of OsReceive) and will
also get a "Process does not exist" error., Any semaphores created by this
process are also deleted. Therefore, any processes that subsequently wait on
these semaphores will get a "Semaphore does not exist® error.

Parameters

code -- the contents of this word are put into the “note" parameter (see
DsReceive) of any process waiting for a message from the exiting process.

OsFlushAllIBu¥rTers

P PROCEDURE OsFlushAllBuffers {(conn : HWord;
_;} VAR error : HWord);
Purpose and Operation
This call writes the contents of all buffers in memory (allocated with OsOpen)
currently assigned to a file out to the file residing on a device-subject. It
tan thus be thought of as a precautionary call that lets you save the contents
of tile buffers without going through an OsClose-OsOpen sequence.
Parameters
conp -- connection number (data type Word) that specifies the file whose
bufferi{s) is to be saved, '
Possible Errors
File not open {(error 205),
Bad conrnectiop (error 221),
All disk errors (101 -108),
L _,a-‘}

Procedures and Functions &-23

OsForkProcess

FUNCTION OsForkProcess (VAR entryPoint : Bytes; (jj:
priority : Byte;
usesB0B7 : Boolean;
stackBSize : Word;
VAR error ; Word) : Word;

Purpose and Operation

This call forks a new process with the parameters specified. "Forking" a
process is similar to creating a process with the following exceptions and
limitations:

o The code for the process being forked must already be present in memory.

0 The process being forked must be a parameterless PUBLIC procedure, and must
be a "far’' or LARGE procedure as opposed to a ‘near’ or SMALL procedure.
{See the compiler controls section of the appropriate language manual for a
discussion of LARGE and SMALL.)

o The forked process cannot be terminated using an 0sExit call: it must be
terminated using OsDeleteProcess.

When a process is first forked, it wil]l be in the ready state. Thus, if it
happens to be the highest priority ready process, it could begin executing
immediately,

Parameters

entryPoint -- the address of a LARGE, parameterless, procedure, (In Pascal,
you can just specify the name of the procedure.)

priority -- a value in the range of 0 to 235 indicating the priority of this

process, The highest priority is 0, the lowest is 233.

usesB0B7 -- if this Boolean value is true, it indicates that the B0B87
numerical data processor is used by this process. This informs GRiD-0S
that the contents of the BOB7 registers must be saved whenever this process
leaves the run state.

stackSize -~ specifies the number of words to be reserved as stack for the
process (typically in the range of 500-1000 words). Note: an insufficient
stack size will cause seemingly random failures.

Function Return

pid -- process identification number (data type Word) that can be used by
other system calls to refer to this process.

Possible Errors

Out of Memory {error 2) if insufficient memory is available to fork this
process.

b-24 GRiD-0S8 Reference

(::> OsFree

PROCEDURE 0OsFree i{block : Fointer:
VAR errar : Wordi;

Purpose and Operation

Thie call frees or deallocatesz a blccy of memory that was previously allocated
to the calling process,

Parameters

bleck -- points to the first byte of the block of memory to be freed. This
should be the =ame as the pointer returned from OsAllocate when the block
waz allocated, GSee the "block" parameter for the DsAllocate funclion for a
discussion,

Possible Errors

Invalid memory block f(error 11},

@

Procedures and Functions &=-25

OsGetArgument

FUNCTION OsBetArgument (short : Boolean; <:j:
VAR argument : Bytes) : Char;

Purpose and Operation

This call returns arguments from the command line in the form of a string of
characters up to 255 characters in length. Each argument must be separated by
a delimiting character (described below) and each cali to OsGetfrgument
returns one argument. Therefore, you would use this call repeatedly until you
have obtained all of the argueents contained in the command line.

The argument record returned by this call is a short string that may be up to
255 bytes in length excluding the length byte. Since you cannot know the
length of the argument until it is returned, you must ensure that the buffer
you provide cap accommodate the maximums length of the argueent,

Delimiter Characters
In addition to returping an argument, this function also returns the character
that was used as the delimiter to mark the end of each argument. The ASCII

codes recognized as delimiters are as follows:

character A5CII hex value

Tl e bk o Y n A2 | o e o
Al
m

=
Ll
e |
m

Additienally, any byte with a value from 00 to 20 hex or with a value greater
than 80 hex will be recognized as a delimiter character and returned hy
OsGetArgument.

NOTE: These delimeter characters can be used within an argument (for exanmple, (:::

4-26 GRiD-05 Reference

O

within a file name) but they must be enclosed with single quotation marks (').
Parameters

short -- a Boolean indicating whether the argument to be returned is short
{(true) or long {false). A shert argument can be up to B0 characters in
length and all alphabetic characters will be shifted to upper case. # long
argument can be up to 255 characters in length and no shifting of
2lphabetic characters is performed.

argument -~ the buffer where the returned argument (formatted as a short
string) is to be placed.

- Function Return

delim -- the character used as the trailing delimiter for the argument.
Possible Errors

None.

Examples

The following example illustrates the short string recerds and delimiters
returned by successive calls to OsGetfrgument from the following argument.

CAT ‘List Directory’ {RETURN>

length argument delimter
i1st call 3 CAT 20 hex (space)
2nd call 14 List Directory 0D hex {(RETURN)

Notice that a string enclosed in single quotation marks (’) is considered a
literal and characters within such a string that would normally be considered
to be delimeters are simply returned as part of the argument. Thus, the space
separating "List® and "Directory" is not treated as a delimiter. Note also
that the enclosing gquotes are not returned as part of the arguaent.

Another example of the OsGetArgument is when a file of Kind "Text" is selected
from the File form. The system invokes GRiDWRite and when that application
program begins executing, it ocbtains the pathname of the selected file by
calling OsGetArgument to parse the command line passed to it by the Executive
progranm.

Procedures and Functions &-27

OsGetMemStatus

PROCEDURE OsGetMemStatus (pid : Word; (:::

VAR
VAR
Purpose and Operation

memStatus : MemStatusType;
error :Word);

This call returns information concerning the amount of memory that has been

allocated and how much is

still available. Most of the information returned

is a summary of system-wide information but; if you supply a process ID (pid)
with the call, you will be given some specific information about memory

allocation for that process,

The organization of the memory status record

returned by this call is as fallows:

freeBytes : Longint;

freeBlocks :

Word;

largestFree : Word;
allocBytes 3 Longint;
allocBlocks : Word;

largestfAlloc @

MenStatusType = RECORD
END;
Paraseters
pid -- process ID,

information is to be returned.
memory status information returned will be a summary of memory usage by all

processes.
memStatus -- the location

Word;

A word identifying the process whose memory status

If this word is null (OFFFF hex), then the

@

where the memory status record should be returned.

HemStatusType Record Fields

freeBytes -- the number of unallocated bytes remaining in the systea.

freeBlocks -- the total number of unallocated blocks, regardless of size,
remaining in the systes.

largestFree -- the size, in bytes, of the largest unallocated block remaining

in the systen,

allocBytes -- the number of bytes allocated to the calling process or, if a
null (Offff) pid is specified, the total number of bytes allocated to all
processes in the systenm.

allocBlocks -- the number
calling process or, if
of blocks allocated to
targestAlloc -~ the size,
to the calling process

of blocks, regardless of size, allocated to the

a null (OFffff) pid is specified, the total nuamber
all processes in the systea.

in bytes, of the largest block of memory allocated
or, if no pid is specified, the largest block of

memory allocated to any process in the systenm.

Possible Errors

Process does not exist (error 251).

4-28 GRiD-05 Reference

OsGetPrevtTix
ij:) FUNCTION OsGetPrefix : ShortStringPtr;
Purpose and Operation
This routine returns a pointer to a short string containing the current
device-subject prefix and can be used to read the current prefix, Note: the
pointer that is returned points to a string that is in the system data space.

This string should not be updated. You can use a Common Code call, if it is
necessary to change the prefix.

Procedures and functions 6-29

OsGetProperty

PROCEDURE 0OsbetProperty (tag : Word; (:::
VAR length : Wordj
VAR buffer : Bytes;
VAR erraor : Word);

Purpose and Operation

This routine lets you examine some of the system-wide properties that apply to
a specific Compass computer. These properties are normally examined and set
using GRiDManager and the settings of the properties are recorded in the file

- User*Profile™ under the Programs subject.

See OsPutProperty for additional information on the User™Profile™ file.

Parameters
tag -- specifies which system property is to be examined as follows:
Value Praperty
1 time offset
2 screen frame on/off
] system-wide font
9 current printer

10 current plotter
11 start-up file

length -- the length, in bytes, of the buffer parameter to be associated with
the designated tag. C
buffer -- a sequence of bytes defining the characteristics of the designated
tag as follows:
Tag Data
1 timeDffset record (described below)
2 data = 1, frame is ony 2 = frame is off
9 system-wide font name
9 current printer name

10 current plotter name

11 start-up {(boot) file nanme
The data associated with font, printer, plotter, and start-up file is the
name of the device/file as it would appear in the Options form of
GRiDManager: a complete pathname is not required.

error -- if the tag specified does not exist, an error 225 (Bad parameter) is
returned,

TimeCffsetType Record Fields

TimeOffsetType = RECORD
year : Word;
dayDffset : Word;
hour : Bytej
minute : Byte;
second § Byte;
dayODfWeek : Byte;

~30 GRiD-05 Reference

é
N

END;

Each of the fields in this record specify ap offset from the time as
maintained by the built-in clock in the Compass computer. The built-in clock
maintains Greenwich Mean Time {GMT). The offset values in this record provide
the information needed to "localize" the time displayed by applications to the
time where the Compass is currently located.

Procedures and Functions &-31

O=sGetsSire
FUNCTION DsGetSize (block : FPointery @
YAR error : Word! : Word:
Purpose and Operation
This call returns the sice of a memory block that was previously allocated to
the calling process.
Parameters
block -- points to the first byte of the block whose size is to be returned.
This should be the same as the pointer returned from Dshllocate when the
block was allorated.

Function Return

length -- a word specifying the length, in bytes, of the specified memory
block allocated to this procese. A length of zero indicates 64k bytes.

Possible Errors

Invalid memory block (error 11).

6~32 GRiD-05 Reference

O=sGetsStatus

FROCEDURE OsGetStatus iconm 3
VAR status
iength

VAF error :

Purpose and Operation

Word;

Bytes;
Word:

Word)

This £all is a rather special purpose call thet would normally be used only by

system level maintenance or trouble-shecoting programs.
the status information sssociated with each file or device.
status information about a file that is currently attached.
information includes such things as whether the file is open, what type of
access it is open for, permissable seek directions, current file position,

The status

current size of the file, and total spacez allocated for the file. The
organization of the status record returned for files and mass storage devices

by this call is as follows:

StatusType = RECORD

apen ; Boolean;
Bute;
seek ¢ Byte;

access 3

filePosition : Longint;
filelength

numPages

numPagesAllocated

END;

: Longint:

Word;

Note: The status record returned for non-mass storage devices {such as
printers) is upiquely defined and different for each device.

Parameters

tonn -- connection number (data type Word) that specifies the file whose

status is to be examined.

status -- the location where the status information

iz to be returned.

length -- the number of status bytes to get from the StatusType record.

StatusType Record Fields (for files or mass storage devices)

It lets you examine
This call returns

open -- a Boolean that, if true, indicates that the file is currently open.
1f False, then no other values in the record are valid.

access -- a byte indicating the access rights for this file (specified at
1f the appropriate bit listed below is on (1), then the
indicated access is allowed:

GsAttach time).

Procedures and Functions

6-33

bit 8 access

0 delete atcess (true if either write or update true)
i read access
2 write access
3 update access
seek -~ a byte indicating the types of seeking which can he performed on this

connection. The types of seeks permitted are device dependent., If the
appropriate bit listed below is on (1), then the indicated access is
allowed:

bit # access

0 seek forward
1 seek backward

filePosition -- a long integer indicating the byte number that is the current
file position location.

tileLength -- a long integer indicating the total number of bytes in the file.

numPages -- a word indicating the total number of pages this connection
currently occupies on the device. Page size {sector size) is 254 bytes on
bubble memory and 512 bytes for all other mass storage devices.

numPagesAllocated -- a word indicating the total nuasber of pages {sectors)
allocated for this connection on the device.

Possible Errors

Bad connection {error 221).

6-34 OGRiD-0S Reference

@

OsGetSystemlID

PROCEDURE OsGetSystem!D (VAR systemID : Bytes);

Purpose and Operation

This call returns the identification string for the system in the foras
“Version #.%.% of BRiD-05*, The identifier is in the format of a ShortString.
Paraneters

systemID -- the location to storé the returned system ID record. This should
be formatted as a short string.

Procedures and Functions 6-35

OsGetTinme

PROCEDURE OsBetTime (mode : Byte;
VAR time : TimeType!;

Purpose and Operation

This call returns all available information from the Compass’ real time clock.
The organization of the time record returned is as fallows:

TimeType = RECORD
year : Word;
month : Byte;
day : Byte;
hour : Byte;
minute : Byte;
second : Byte;
tenth0fSec : Byte;
dayOfWeek : Byte;
daydfYear : Word;

END;

Parameters

mode -- if this byte equals {, then time is based on Greenwich Mean Time
(6MT). If this byte equals 2, then all times are based on the local, or
Compass-relative time,

time -- the location where the time imformation is to be returned.

TimeType Record Fields

year -- a Word specifying the current year.

month -- a Byte specifying the number of the current month (1-12),.

day -- a Byte specifying the current day (i-31}).

hour -- a Byte specifying the current hour (0-23).

minute -- a Byte specifying the current minute (0-59),

second ~~ a Byte specifying the current second (0-59),

tenthOfS8ec -- a Byte specifying the current 1/10 second (0-9),

dayODfWeek -~ a Byte specifying the current day of week (Sunday = 1, Saturday
= 7).

dayBfYear -- a Word specifying the current day of year (1-344).

6-36 GRiD-DS Reference

C

&

O

OsGetiWork

FUNCTION (QOsGetWork : ShortStringPtr;
Purpose and Operation

This routine returns a pointer to the shert string containing the current
device designated as the ‘work’ device used by compilers and the link progranm.
Note: the pointer that is returned points to a string in the system data
spacte. This string should not be updated.

OstLtooktUpName

FUNCTION OsLoockupName (VAR name : Bytes;
VAR error : Word) : Longlnt;
Purpose and Operation

This call looks up a specified name and returns the token that was stored with
it by an OsRegisterName call.

Paraseters

name -~ the location of the name to look up, The name should be formatted as
a ShortString up to 255 characters in length.

Function Return

token -- the LongInt that accompanied the specified name.
Possible Errors

File (Name) does not exist {error 33).

Procedures and Functions 6-37

OsMatchiWildcard

PROCEDURE OsMatchWildCard (VAR testStr : Bytes;
strLen : Word;

VAR matchStr : Bytes;
matchLen : Word;
idepOfCase : Boolean;
fullMatch : Boolean;

VAR length : Word};

Purpose and Operation

This routine compares a specified string (testStr) to a wildcard string
(matchStr) and is typically used for comparing pathnames. The wildcard string
can contain the wild card character (0F7 hex) which will match with any
character or string of characters. For example, if the matchStr is "G...n"
{where "..." represents the wildcard character OF7 hex), this string would
match fully with GRiDPlan and Govern, and would match through the first six
characters with the string "Goldenrod®,

You can specify that upper case and lower case be ignored and whether the two
strings must match completely. Upon completion, the variable length indicates
how much of the two strings are the same. If length is zero, then there was no
match,

Parameters

testStr -- the sequence of bytes that are to be comspared against the wildcard
string.

strien -- the length of the string that is to be compared against the wildcard
string.

matchStr -- the wildcard byte string against which the comparisen is to be
made. This string can contain the wildcard character {(7F hex) that will
match with any character(s) in the target string.

matchlen -~ the length of the wildcard string.

idep0fCase -- ignore case. If true, the comparison is made without regard to
upper or lower case, [f false, the case of characters in the strings must
match exactly,

fullMatch -- If true, the two strings must match in their entirety. If they
do not, 2 length of zero is returned. If false, the length will indicate
how many bytes of the two strings matched.

length -- indicates how many bytes of the two strings matched. The call is
terminated as soon as non-matching bytes are encountered.

6~38 GRiD-0S Reference

O

OsOpen

PROCEDURE OsOpen (conn : Word;
numBuf : Byte;
VAR error : Word);

Purpose and Operation

This call opens a file by allocating memory for the file buffers and file
pointers that will be used during subsequent accesses., The file must have
previously been attached using OsAttach.

Each opening of a file requires the allocation of at least one buffer in
memory. You can specify that amore than one buffer be allocated to increase
performance. -- you are limited only he the amount of available menmory.
However, one buffer should usually be sufficient and is the recommended number
because of the memory utilization penalty incurred by multiple buffers. NOTE:
the buffer for hard disks and floppy disks is 512 bytes, and for bubble memery
is 256 bytes.

When a file is first opened, the current file position marker is set to zero.
See "Operating on Files" in Chapter 3 for a discussian of the current file
position marker,

Parameters

conn -- connection nuamber (data type Word) that specifies the file that is to
be opened.

numBuf -- the nuasber of buffers to use for this file.

Possible Errors

Dut of memory (error 2).

Bad connection {error 221)}.

File already open {error 222),
All disk errors (101 - 10B).

Procedures and Functions &-39

OsOverlay

PROCEDURE BsOverlay (VAR name : Bytes; (:::
pid : Word;
VAR error : Word);

Purpose and QOperation

This call lpads a specified overlay program into memory., Only one level of
overlays is allowed: a program that has been brought into memory as an overlay
cannot then issue an OsOverlay call. This routine can be called only from the
root (non-overlaid) phase.

IMPORTANT: ®hen an overlay module is loaded into memory, the previous
overlay’'s cnde and data segments are overwritten. Therefore, you cannot have
any static variables in the data segment of an overlay: they must be in the
root module. For a thorough discussion of overlays, see the GRiD Program
Development Guide.

Parameters

hame -- a record, formatted as a ShortString, containing the name of the
overlay. The overlay name is defined using the linker overlay control.
Refer to the Program Development Guide for details.
pid -- the process ID of the overlay. Usually, this will be the same as the
pid returned by OsWhoAml; that is, the overlay is part of the same process (:::
that is issuing the OsOverlay call.

Possible Errors
File not found {(error 33).

All disk errors (101 - 10B).
811 loader errors (300 - 304).

&-40 GRiD-08 Reference

®

L

OsPutProperty

PROCEDURE O(OsPutProperty (tag : Word;
length : Word;
VAR buffer : Bytes;
VAR errar : Ward};

Purpose and Operation

This routine lets you alter some of the system-wide properties that apply to a
specific Compass computer. These properties are usually set using GRiDManager
and the current settings are recorded in the file User“Profile™ under the
Programs subject.

WARNING: Tab values ! thorugh 1000 (decimal) are reserved for use by GRiD,
Never specify a tag value in the range 1 - 1000 other than those listed below.
Dther tag values in this range are associated with system internal information
and altering the data associated with these other tags can have unpredictable
results. You can, however, use tags beyond this range to record user-specific
information in the file User“Profile".

Parameters
tag -~ specifies which system property is to be altered as follows
Value Property
i time offset
2 screen frame on/off
3 system-wide font
9 current printer

10 current plotter
11 start-up file

length -- the length, in bytes, of the buffer parameter to be associated with
the designated tag.
buffer -- a sequence of bytes defining the characteristics of the designated
tag as follows:
Tag Data
1 timeOffset record (described below)
2 gata = 1, turn frame on; 2 = turn frame off
3 syster-wide font name
9 current printer name

10 current plotter name
1t start-up (boot) file name
The data associated with font, printer, plotter, and start-up file is the
name of the device/file as it would appear in the Options form of
GRiDManager: a complete pathname is not regquired.
error -- if the tag specified does not exist, an error 225 (Bad parameter) is
returned.

TimeCffsetType Record Fields

TimeQf fsetType = RECORD
year : Word;

Procedures and Functions b-41

dayDffset : Word;

hour : Byte;)
minute : Byte;
second : Byte;
dayO+fYeek : Byte;
END;

Each of the fields in this recerd specify an offset from the time as
maintained by the built-in clock in the Compass computer. The built-in clock
maintains Greenwich Mean Time {(GMT). The offset values in this record pravide
the informaticon needed to "localize" the time displayed by applications to the
time where the Compass is curreptly located.

6-42 GRiD~-05 Reference

O

OsRead

FUNCTION OsRead (conn : Word;
VAR buffer : Bytes;
length : Word;
VAR error : Word} : Word;
Purpose and Operation

This call reads a specified number of bytes from a file and places thea in a
specified buffer. The read operation begins at the current file position. If
the end of the file is reached before the specified number of bytes are read,
the read is terminated and the current file position is left at one byte

" beyand the end of the file. This function returns a word specifying the

number of bytes actually read from the file, The number of bytes read can be
less than the number specified by length only if the end of file is reached or
if an error occurs.

If the file was attached in the partial directory aode (attach access type =
5) or complete directory mode (attach access type = &), this call treats
directory entries, rather than bytes, as the objects that are read. The read
operation begins at the current directory entry. If the end of the directory
is reached before the specified number of entries are read, the read is
terminated and the current file position is left at one entry beyond the end
of the directory. In directory mode, this function returns a word specifying
the number of entries actually read from the file. The number of entries read
will be less than the number specified by length only if the end of the
directory is reached ar if an error occurs.

Parameters
conn -- connection number (data type Word) that specifies the file to be read.
buffer -- references the buffer where the data read from the file is to be

placed., Note: it is the programmer’'s respansibility toc provide a buffer
large enough to accommodate the data that is read. The operating system
does not check the size of the buffer.

length ~- the number of bytes {or directory entries) to be read from the file,
The maximum length is 45,535 bytes.

Function Return

amountRead -- a word specifying the number of bytes (or entries) actually read
from the file,

Possible Errors
File access denied (error 3B8).
File not open (error 2035},

Bad connection {(error 221).
All disk errors (101 - 10B}.

Procedures and Functions 5-43

OsReceive (ﬁ
v

FUNCTION DOsReceive (sourcePid : Word;
class : Word
timeLimit : Word;
VAR note : Word;
VAR error : Word) : Pointer;

Purpose and Operation

This call places the current process in the wait state where it remains untijl
it receives a message sent by another process, or until a specified time limit
has expired, or until it receives an appropriate error message from the
systenm.

I¥ an appropriate message is already available when the process issues an
OcReceive, the process immediately proceeds to the ready state. If you
specify that the message must be sent by a particular process, and if that
process does not exist, BGRiD-DS will give the waiting process a Process Does
Not Exist error and move the process to the ready state.

If a message of the specified class and from the specified sending process is

not available when this process enters the wait state, the process will remain

there, The process will stay in the wait state until an appropriate message

is received or until the specified time limit expires. You can specify a time

limit with a null {OffffH} value. In this case, the process will wait forever C
to receive the appropriate message. (NOTE: if the specified sending process

is deleted, the waiting process would be given an appropriate error indication

and moved to the ready state.)

The sending process does not make a separate copy of the message for the
receiving process: there is but a single instance of the message. Therefore,
when the receiving process gets back to the run state, it should immediately
make its own copy of the message and inform the sending process that it is
finished with the message. The receiving process could accomplish this by
passing a note back to the sending process.

Parameters

sourcePid -~ the process from which the message is to be received. If null
(OffffH), then a message sent by any other process can be received.

class-- the tlass of message that can be received. If this is null (0ffffH)}, a
message of any class can be received.

timeLimit -- the amount of time, in milliseconds (rounded up to a multiple of
10 milliseconds), that the process will wait for an appropriate message.
If the time limit eupires before a message is received, the process goes to
the ready state and a Time COut error is returned. If you specify a null
(0FfffH) timeLimit, the process will wait forever for a message. If you
specify a timelLimit of zero, the process will proceed immediately to the (::;

6-44 GRiD-0S5 Reference

O

Ly

ready state.

note -- the 2-byte note (data type Word) that can be passed by value from the
sending process. Interpretation of the note contents is application
dependent,

Function Return

This procedure returns a pointer to the buffer holding the actual message

sent. If you are issuing this call in Pascal, you must provide an appropriate

data type to obtain the returned pointer,

Possible Errors

Process does not exist (error 251) if the specified message-sourcing process
does not currently exist in the systenm.

Timeout (error 253) if a message is not received before the specified time
limit expires.

Procedures and Functions 6-45

OsRegisterName

PROCEDURE OsRegisterName (VAR name : Bytes; <:::
token : Longlnt;
mode : Byte;
VAR error : Word);

Purpose and QOperation

This call records or registers a ShortString containing a name that other
processes or prograss can examine or look up (using DsLookupName). A token
(data type LongInt) is stored along with the name and this token can thus be
accessed by any process or program that knows the appropriate name.

This same call can delete or unregister a name so that it is no longer
available to other processes or programs in the system.

The OsRegisterName and OsLookupName calls provide a very simple mechanise for
exchanging information between processes. This capability is most often used
to establish initial contact between processes before they kpnow the process
IDs required to use the message passing or semaphore calls to communicate with
other processes.

Paraasgters

name -- the location of the name to be registered or unregistered. The format
of the actual name at this location is a short string up to 253 characters \

in length.

token -- a LongInt that is stored along with the name. Interpretation of the
token is entirely up to the user.

mode =-- if the value of this byte equals 1, it means that the indicated name

is to be registered., If the value of this byte equals 2, it means that the
indicated pname is to be unregistered or deleted.

Possible Errors

Out of memory lerror 2).
File (name) already exists {(error 32).

6-446 BRiD-DS Reference

OsRempovelDevice

O

PROCEDURE 0sRemoveDevice (VAR name : Bytes;
VAR error : Word);

Purpose and Operation

This call removes the specified device from the system’'s Active Device Table,
Thus, this call is the squivalent of "deactivating" a device from the command
line (see the Program Development Guide for a description of the Deactivate

" program}. For a detailed discussion of how to use this call, refer to GRiD
documentation on device drivers.

Parameters

name ~-- the device name (formatted as a ShortString) assigned during the
OsAddDevice call to the device driver.

Procedures and Functions 5-47

OsRename

PROCEDURE OsRename (conn : Word;
VAR newName ; Bytes;
VAR error : Wordl;

Purpose and Dperation
This call changes the name of an existing, attached file. The file must have

been attached with a write access or update access specified and the file must
also be open.

Paranmeters

conn -- connection number {(data type Word) that specifies the file that is to
be renamed,

newName -- the new file name to be given to this file. Note that the

device-subject part of the pathname remain unchanged. It is only the
fileName (or title) portion that is altered, If you supply a full pathname
with this parameter, the device-subject are ignored., If you do not specify
a kind, it is given a kind of Untyped,

Possible Errors

File already exists (error 32},
All disk errors (101 - 108).

&-48 BRiD-DS Reference

OsSeek

M)

- PROCEDURE DsSeek (conn : Word;
mode : Byte;
length 3 Longint;

VAR error : Word);

Purpose and Operation

This call alters the current file position by moving the marker a specified
number of bytes., The first byte of a file is byte zero. You can move the
marker forward or backward in the file, move it to a specific byte location in
the file, or move to a position a specific number of bytes in from the end of
the file. ’

A seek does not actually access a file on a device -- it simply changes the
eurrent file position.

I+ a seek is made beyond the end of the file, the current file position is
changed but the file is not actually extended until a subsequent write is
performed at that position.

Paraaeters
. conn -- connection number (data type HWord) that specifies the file on which
| the seek is to be performed.
= mode -- a byte specifying the type of seek to perform as follows:
| = move marker back by length bytes
2 = set marker at byte specified by length
3 = move marker forward by length bytes
4 = move marker tp end of file minus length bytes

length -- the number of bytes to seek or the location that the marker should
be positioned to.

Possible Errors

File not open {error 205).

Bad connection {error 221).
Bad parameter {error 225).

Procedures and Functions 6-49

OsSend

PROCEDURE (sSend (destPid : Word; (:::
class : Word
note : Word;
VAR message @ Bytes;
VAR error : Word);

Purpose and Operation

This call sends a message to another process. The 0sSend call does not make a
separate copy of the message. Therefore, you must ensure that you do not

- alter the message until after the intended receiving process is done with the
message. There is no automatic mechanism for verifying reception of a
message, You can accomplish this verification yourself by, for example,
having the receiving process send a note back to the eriginator when it has
finished with the message.

Parameters
destPid -- the process that is to receive the message.
tlass -- the user specified class that will be associated with this message

and examined to determine if it can be delivered to a receiving process.
If you specify a null (0ffffH) class, the message can only be received by a
process that has specified a null class as part of its OsReceive call. (:::

note -- the Z-byte note {(data type Word) that can be passed by value to the
receiving process. Interpretation of the note contents is application
dependent.

message -— the buffer containing the actual message. IMPODRTANT: GRiD-08
requires that the first 16 bytes of the message contain all zeres. The
length and format of the rest of the message is application dependent.

Possible Errors

Process does not exist f{error 251) if the process that the message is
addressed to does not exist in the systenm.

Out of memory (error 2) if there is insufficient memory to send the message.

6-50 GRiD-DS Reference

p

OsSetPrivrity

PROCEDURE OsSetPriority (pid : Word;
priority : Byte;
VAR error : Word);

Purpose and Operation
This call assigns a new priority to a specified process. Thus, you can
dynamically change process priorities from the initial values assigned when

each process 15 created. A process can change the priority of any ather
process, and can also change its own priority.

Parameters

pid -- process identification number. A word identifying the process whose
priority is to be changed.

priority -- the new priority, in the range of 0 to 255, for the specified
process. Zero is the highest priority, 255 the lowest.

Possible Errors

Process does not exist (error 251).

Procedures and Functions &-51

OsSetStatus

PROCEDURE DsSetStatus {conn : Word;
VAR status : Bytes;
length : Word;
VAR error : Word);

Purpose and Operation

This call sets up status information about a file that is currently attached.
It will typically be used only on special devices, such as the modem or serial
port, that require very specific operating parameters. For example, you would
use the OsSetStatus procedure to set the baud rate, parity and other operating
parameters for the modem. The use of 0sSetStatus is device dependent and is
described in the documentation for each specific device.

Note that the ‘status’ parameter used here is not the same StatusType record

that is used with the DsGetStatus call. Instead, it simply points to a buffer

containing application or device-dependent bytes.

Parameters

conn -- connection number {(data type Word) that specifies the file whose
status is to be set.

status -~ the status information to be sent.

length -~ the number of status bytes to send.

Possible Errors

Bad connection {error 221),

6-52 GRiD-DS Reference

{

®

e

OsSigral

PROCEDURE DsSignal (sid : Word;
mode 1 Byte;
note : Word;

VAR error : Word};

Purpose and Operation

A semaphore is always created in the busy state. This call sets the specified
semaphore to the not busy state. 1f another process is waiting at this
semaphore when the 0OsSignal call is issued, that waiting process proceeds to
the ready state. [f more than one process is waiting at this semaphore, the
process with the highest priority proceeds to the ready state (except for mode
3y explained below, which allows all waiting processes to proceed).

Parameters

sid -~ semaphore identification number that was returned by GRiD-05 when the
semaphore was created.

mode -- a byte specifiying one of three signalling amodes:

mode=l -~ This mode always lets one, and only one, process pass. If no
process is currently waiting at the semaphore, the signal is retained
(the semaphore is held not busy) until an OsWait is issued to this
semaphore. The process issuing the OsWait proceeds to the ready state
and sets the semaphore busy. If a process is already waiting at the
semaphore, it proceeds to the ready state and the semaphore returns to
busy. This mode can be used to ensure that only one process can
proceed through a critical section of code at a tine.

mode=2 -- This mode lets one process pass if there is currently a2 process
waiting, but the signal is not retained. If a precess is currently
waiting at the semaphore, it is signalled and proceeds to the ready
state, Otherwise, the semaphore remains busy and a process arriving
subsequently must wait for apother 0sSignal. This mode is useful for
informing any waiting process that a particular event has occurred.

node=3 -- This mode lets all currently waiting processes pass. All
processes waiting at the semaphore are signalled and proceed to the
ready state. This mode is useful for synchronizing the initiation of
several processes. The signal is not retained; if no processes are
currently waiting at the semaphore, the semaphore remains busy and
processes arriving subsequently must wait for another OsSignal.

note -- the 2-byte note (data type Word) that can be passed by value from the

signalling process. Interpretation of the note contents is application
dependent.

Procedures and Functions &-53

Possible Errers .

Semaphore does not exist (error 252) if the specified semaphore {sid) does not
exist in the system.

6-54 OGRiD-0S Reference

-/

OsSwitchBurfer

FUNCTION OsSwitchBuffer (VAR buffer : Bytes) : Word;

Purpose and Operation

This call lets you specify ap alternate buffer to be used for the

OsGetArqument call and thus obtain arguments from places other than the

command line, You should not use this call until the coesmmand line has been

tompletely processed since there is no way to switch back.

Parameters

buffer -~ the new buffer that a subsequent OsGetArgument call should scan for
arguments.,

Function Return

length -- a word indicating how far scanning had proceeded in the previous
buffer; that is, the first byte beyond the last delimiter character
encountered on the previous OsGetArgument call.

Possible Errors

None.

Procedures and Functions &-55

OsTruncate
PROCEDURE OsTruncate (conn : Word;
VAR error : HWord);
Purpose and Operation
This call deletes the contents of a file from the current file position to the
end of the file. Upon completion of the truncation, the current file position
is one byte beyond the new end of file.
Paraneters
conn -- connection number (data type Word) that specifies the file that is to
be truncated.
Possible Errors
File not open (error 203).

Bad connection (error 221).
All disk errors (101 - 108},

6-556 GRiD-DS Reference

O

Oskhait

FUNCTION OsWait {sid : Word;
timeLimit : Word;
VAR error : Word) : Word;

Purpose and Operation

This call suspends the current process by placing it in the wait state where
it remains until the specified semaphore is not busy or until a specified time
!imit has expired.

I+ the semaphore is not busy when the process issues this call, the process
immediately proceeds to the ready state and the semaphore is set to busy. The
semaphore remains busy until an 0sSignal call is directed to it (typically, by
the process that most recently proceeded past the semaphorel.

I1¥ the semaphore is busy when the process issues this call, the process stays
in the wait state until the semaphore is signalled (set not busy} or until the
specified time limit expires. VYou can specify a time limit with a null
{0ffffH) value., In this case, the process will wait forever for the semaphore
to become not busy. (NOTE: if the specified semaphore is deleted, the waiting
process would be given an appropriate error indication and moved to the ready
state.)

1 other processes had previously issued DsWait calls to this semaphore and
are still waiting for their turn to proceed, this process is placed in a queue
according to its process priority, It cannot proceed until all of the
waiting processes of a higher priority have passed the semaphore.

Parameters

sid -- semaphore identification number that was returned by GRiD-05 when the
semaphore was created,

timeLimit -- the amount of time, in milliseconds (rounded up to a multiple of

10 milliseconds), that the process will wait for a signal, [If the time
limit expires before a signal is received, the process goes to the ready
state and a Time Out error is returned. If you specify a null (0ffffH)
timeLimit, the process will wait forever for a signal. If you specify a
timeLimit of zero, the process will proceed immediately to the ready state:
if there was no signal for the semaphore, a timeout error will be returned.

Function Return

note -- the 2-byte note (data type Word) that can be passed by value from the
signalling process. Interpretation of the note contents is application
dependent.

Possible Errors

Timeout (error 253} if a signal is not received hefore the specified time
limit expires,

Procedures and Functions £-37

Semaphore does not exist {(error 252) if the specified semaphore (sid) does not

exist in the system. '

4-38 GRiD-0S Reference

O

OsbhoAm I

FUNCTION OsWho&ml : Word;
Purpose apd Operation

This call returns the process identification number (pid) assigned to this
process when it was created.

Function Return

pid -- a word that is the process identification number assigned to the
requesting process,

Os¥r ite

PROCEDURE OsWrite (conn : Word;
VAR buffer : Bytes;
length : Word;
VAR error : Word);

Purpose and Operatioen

This call writes a specified number of bytes to a file. The write operation
begins at the current file position. If the end of the file is reached, the
additional data is appended to the file and the end of file marker is asoved to
a8 position one byte beyond the last byte written. I the current file
position where the write begins is already beyond the end of the file, the
file is extended to that point and the writing begins there.

If the current file position is not beyond the end of the file, the new data
is written over the previously existing data.

Paraseters

conh -- connection number {(data type Word) that specifies the file to be
written to.

buffer -- a pointer to the buffer containing the data to be written to the
file,

length -- the number nf bytes to be written to the file,
Possible Errors

File access denied {error 38).
Device full {(error 41).

File not open {(error 205).

Bad connection {error 221).
All disk errors (101 - 108),

Procedures and Functions £-59

WHWinAllaocateMMindowmwMemory

FUNCTIDN WinfllocateWindowMemory (width : Integer;
height : Integer;
format : WindowFormat;
VAR error : Word): WindowRegionPtr;

Purpose and Operation

This call allocates memory for an alternate window.

It frees an application

from concerning itself with the number of bits per pixel regquired by the

SCreen.

GRiD format.

The application must specify whether the window region is to be used
as a BRiD format window or a host (non-GRiD} screen format windowm.
alternate window i to be used to load screenimage files,
I+ the alternate window is only going to be

If the
ther it should be in
used to redirect the

output so that the user doesn’t see it, then 1t should be in the screen

format.
quickly.

A pointer is returned to the WindowRegion record for this window.
organization of the WindowRegion record is as follows:

TYPE
WindowFormat

tecreenfFormat, GRiDFormat);

RECORD
format : WindowFormat;
width : Integer;
height : Integer;
bufiength : Word:
buf : Fointer;
bitsPerPel : Byte;
bytesFerline : Word;
END;

WindowRegion

WindowRegionFtr = “WindowRegion;

In screen format, trancsfers between windows will be accomplicshed more

Note: To deallocate memory for a window, you must use two OsFree calls -- one

to free the WindowRegionPtr and one to free the "but" pointer.

Parameters

width -~ the width of the window in pixels,

height —- the height of the window in pixels.
format -- GRiD format eor host screen format.

WindowRegion Record Fields

format -- GRiD format or host screen format,
width -- the width of the window in pixels.
height -- the height ot the window in pixels.

buftength -- the size, in bytes, of the buffer allocated by the system for

6-60 GRiD-0S5 Reference

o

this window.

buf -- a pointer to the first byte af the buffer allocated for this window,
bitsPerPel -- the number of bits-per-pixel used for the window. For GR2D

format windows, there is one bit
bytesPerline -- the number of btytes
line of pixels for the allocated

Function Return

WindowFegionFPtr -- a pointer to the

per pixel.
used by the system to store one horizontal
window,

WindowRegion record for this window,

Procedures and Functions &-61

WinClipline

FUNCTION WinClipLine (VAR x1, vy, %2, v2: Integer) : Boolean; (::
Purpose and Operation

This function tells you if any portion of a line (defined by xit,yl and x2,y2)
extends outside of the current clipping rectangle. If clipping would occur,
the variables x1, y!, x2, v2 contain the coordinates of the line as it will be
clipped and the function returns a True Boolean value. If the line lies
completely inside the window, this function returns FALSE and the unchanged
coordinates of the line are returned. Note; This function neither draws nor

- clips the line; use WinDrawlLine to draw the line -- it will be clipped as

necessary by the clipping rectangle. You can use WinClipLine to determine it
a line would be drawn completely outside of a clipping rectangle and thus skip
the WinDrawline if the line would not be displayed within the rectangle.

Paraoeters
xl,vy1, x2,y2 -~ the two window relative pixel coordinates defining the line.

On entry, they define the line that is to be checked for clipping. Dn
return, they define the line as it would be clipped.

6-42 GRiD-DS Reference

p

WinClipRectangle

PROCEDURE WinClipRectangle (VAR r : Rectangle);

Purpose and Operation

This function tells you if any portion of a rectangle {r) extends outside of
the current clipping rectangle. 1If clipping would occur, the variable r
contains the coordinates of the rectangle as it will be clipped. If the
rectangle lies completely inside the window, the unchanged coordinates of the
rectangle are returned. Note: This function neither draws nor clips the
rectangle.

Paramters

r -- the rectangle that is to be clipped. On return, contains the clipped
dimensions of the rectangle.

NinCopyRectangle

PROCEDURE WinCopyRectangle (VAR r: Rectangle;
newTopleft: Point)

Purpose and Operation

This procedure copies an area defined by the rectangle r into another
rectangular area of the window. The new rectangular area is the same size as
the original, but its tep left corner is at the pixel position newTopLeft in
the window. The new rectangle will he clipped as necessary to be displayed
within the clipping rectangle of the window. HWinCopyRectangle copies the
areas point by point and overwrites all pixels in the copy locatioen,

Parameters

r -- the source rectangle whose contents are to be copied. On return, this
variable indicates the size of the resultant destination rectangle
(possibly clipped).

newfopleft -~ the upperleft corner position where the rectangle is to be
copied.

Procedures and Functions b=83

WinCopyRemoteRectangle

PROCEDURE WinCopyRemoteRectangle (source : WindowRegionftr; <f::
dest: WindowRegionPtr; z
VAR r : Rectangle;
newToplLeft : Point;
mode : WORD);

Purpose and Operation

This routine iets vou copy a rectangle frem one windew reg:on to another. T4
either the source or decstination window regions are NIL, then the screen is
aszumed to bte the source or destination, If either source or destination
window are in GRiD format, then the dstz is not only copied, but is alse
translated to the different format required by the destination window, 14
both window regions are in GRiD format, then this routine will keep the data
in GRiD format. The mode parameter is currently reserved for future use and
its value must be zerc i1n order for the routine to function properly,

Parameters

spurce -~ @ pointer to the window from where the rectangle is being topied.
dest -- a pointer to window to which the rectangle is being copied.

r -~ on entry, spetifies the size of the source rectangle that is to be

copied; on return, the size of the source rectangle as it was clipped to
fit in the destination window., Note: the spurce and destinatiorn rectangles

are both clipped to the window bounds -- not the clipping rectangle bounds.
newlTopLeft -- the piwel coordinates of the top left corner of the destination -

window. C::
mode -- reserved for future use, Must be set to zero.

&-64 GRiD-05 Reference

©

HinDrawChar

PROCEDURE WinDrawChar(ch: Char; x,y: Integer);
Purpose and Operation

This procedure draws a character in the window, given the window relative
pixel coordinates where the top left carner of the character is to appear.
Nothing is drawn if any part of the character would be clipped because it lies
outside the window. The size of the character drawn is dependent on which
font is currently lpaded.

Paraseters

ch -- the B-bit ASCII value for the character to be displayed. Note: Because
of internal reguirements and for historical reasons, two ASCII ctodes draw
characters ather than the characters you would expect. If ch is OCDh the
font character represented by BCh is drawn and if ch is OF7h the font
tharacter represented by 86h is drawn,

%,y -- the window-relative pixel location where the upper left corner of the
tharacter is to be drawn.

HinDrawChars

PROCEDURE WinDrawChars(VAR ch: Bytes;
count, x, y: Integeri;

Purpose and Operation
Beginning with character ch in a text buffer, the procedure outputs a
character string that is "count® characters long. It positions the upper left

pixel of the first character at the window-relative pixel coordinate (x,y}.

Example

The following procedure call drans a character string in the window. The top
left pixel of the first character appears at pixel (20, 20) of the window.

WinDrawChars(str*.charsl1l, str.len, 20, 20);

Parameters

th -- a pointer to the first character in a text buffer that is to be output.
count -- the number of ctharacters to be drawn,

Xyy —- the window-relative pixel location where the upper left corner of the

first character is to be drawn.

Procedures and Functions b-65

WinDrawline

PROCEDURE WinDrawLine (xt,yl, x2,y2; Integer); (::

Purpose and Operation

This procedure draws a line within the window. Any portions of the line lying
putside the window are clipped.

Parameters

- x1,yl, x2,y2 -- the window-relative pixel coordinates defining the two end
points of the line to be drawn.

HinDrawbPixel
PROCEDURE WinDrawPixel {(x,y: Integer);
Purpose and Operation

This procedure draws a single pixel at the given window coordinate. If the

pixel lies putside the window bounds, it will be clipped (not drawn). C::
Paraneters
¥y ¥y -=- the window-relative pixel coordinate where the pixel is to be drawn,

b-646 GRiD-0S Reference

WinEraseChar
(::) PROCEDURE WinEraseChar (x,y: Integer);
Purpose and Operation
This procedure will erase a character position (of dimensions tharHeight by
charWidth) even if portions of it eitend out of the window bound.
Parameters

Xy y -- the window-relative pixel coordinate where the top left pixel of the
ctharacter to be erased is located,

WinEraseline
PROCEDURE WinEraseline (x1,yl, x2,y2; Integer};
Purpose and Operation
A line within the current window is erased. @Any portion of the line tying
outside the current window boundaries will not be affected.
Parameters

x1,yl, x2,y2 -- the window-relative pixel toordinates defining the two end
points of the line to be erased.

Procedures and Functions &-&7

—— e
—

o, Lo

WinErasePixel
PROCEDURE WinErasePixel f{x,y: Integer);

Purpose and Operation

This procedure erases a single pixel at the given window-relative coordinate.
If the pixel lies outside the window bounds, no action is taken.

Paraemeters

X, y -~ the window-relative pixel coprdinate of the pixel is to be erased.

HinEraseRectangle
PROCEDURE WinEraseRectangle (VAR r: Rectanglel;

Purpose and Operation

This procedure erases a rectangle in the window. [f two rectangles overlap
and one is erased, the other one will not be restored: the procedure changes
the display's bit map directly. Any portion of the rectangle lying outside
the current window is not affected.

Parameters

r -- the rectangle that is to be erased. Dn return, this variable indicates
the rectangle that was actually erased since portions outside the window

are not affected.

t-68 GRiD-0S Reference

WHinErasekWindomw
PROCEDURE WinEraseWindow;
Purpose and Operation

This procedure erases the contents of the current window, but not the
surrounding frame.

HinFramebWindow
PROCEDURE WinFrameWindow;
Purpose and Operation
This procedure draws a one-pixel (thin) frame outside the current window

bounds. The frame will not be drawn if it has been disabled in the user
profile via G6RiDManager ‘s Option command,

Procedures and Functions

b-59

HinGetWindowExtent
PROCEDURE WinBetWindowExtent (VAR extent : Point); O
Purpose and Operation

This procedure tells you the size of your window by returning the variable
extent. Extent only tells you how big your current window is; it does not
indicate where the window is on the screen. Because windows can be placed
anywhere on the screen, only the size of the window fand not its location) is
important.

- Typically ap application will use this call during initialization to determine
how big a window it has to work with. Since GRiD-06 reserves the right to
change your window size at any time, applications should be designed to run
independent of the window size and screen characteristics.

14 GRiD-0S does change your window size, it places a special character (0C3
hex) in the keyboard queue. When an application receives this character, it
should assume that the dimensions of the window have been altered and must

recalculate the window size (using WinGetWindowExtent) and redisplay the
window using the new boundaries.

HWinInitDefaulthindow (:
PROCEDURE WinlInitDefaultWindow;
Purpose and Operation
This procedure sets the window to the entire screen, erases it, and draws a

one-pixel frame surrounding the screen. The frame will not be drawn if it has
been disabled in the user profile via GRiDManager’'s Option comaand.

6-70 GRiD-05 Reference

O

HinInvertChar

PROCEDURE WinlnvertChar (x,y: Integer);

Purpose and Operation

The procedure performs an exclusive OR (XOR) on all the pixels of a character
position (charHeight by charWidth). Any portion of the character outside of
the window bounds is not affected.

Parameters

" %,y -- the window-relative pixel_locatiun of the upper left-hand corner of the

character.

HinlInvertiine

PROCEDURE WinlInvertLine(xl,yl, x2,y2: Integer);

Purpose and Operation

This procedure performs an exclusive OR (XOR) operation on the given line,
inverting it within the window, Any portion of the line outside of the window
bounds is not affected.

Parameters

x1,y1 x2,y2 -- the window-relative pixel! locations defining the two end points
of the line to be inverted.

Procedures and Functions &-11

HWinInvertPixel

O

PROCEDURE WinlInvertPizel (#,y: Integer);

Purpose and Operation
The procedure performs an exclusive OR (XOR) operation with the single pixel

position specified. If the pixel lies outside the current window, no action
is taken,

X,y -~ the window-relative coordinate defining the pixel to be inverted,.

HinInvertRectangle
PROCEDURE WinlInvertRectangle (VAR r: Rectangle);
Purpose and Operatian

This procedure inverts the bit-map area inside a rectangle in the window. Any
portion of the rectangle lying outside the current window is not affected.

Parzaeters

r -- the rectangle that is te be inverted. 0On return, this variable indicates C::
the rectangle that was actually inverted since portions outside the window
are not affected.

6-72 GRiD-05 Reference

HinlLoadFont

& FUNCTION WinLoadFont (conn : Word;
VAR error : Word): FontPointer;

Purpose and Dperation

This rpoutine loads a font file inte memory and returns a pointer to the font
that can subsequently be used by the WinSetFont function. Before the font can
be loaded, you must first attach (0sAttach) and open (DsOpen) the file,
WinLovadFont also does not detach the file; you must close and detach the file
when finished with it.

NOTE: There are also font handling procedures provided in the common code
package. Those are higher level calls and therefore may be easier to use.

Parameters

conn -- conncection number (data type Word) obtained from OsAttach that
specifies the font file to be Joaded.

HinResetClip
= PROCEDHRE WinResetClip;
02

Purpose and Operation

Resets the clipping rectangle to the entire window. Clipping by the window
boundaries and by the clipping rectangle will now be the saase.

Procedures and Functions 6-73

HinScrollRectangle

PROCEDURE WinScrollRectangle (VAR r: Rectangle;
dir: Direction;
distance: Integer);

Purpose and Operation

The procedure scrolls a rectangle in the given direction by the distance given
in pixels. Portions of the rectangle scrolled out of the display window are
clipped, An open area is left when the rectangle scrolls away from its
original location. WinScrollRectangle returns the coordinates of the open

- space as the rectangle r, without modifying the space. The application eust
update the open area. '

Paranmeters
r -- on entry, defines the rectangular area to be scrolled. O0On return,

defines the rectangular open area freed by the scrolling that can now be
updated by the application.

dir -- the direction (up, down, left, right) in which the rectangle is to be
scrolled,
distance -- the number of pixels that the rectangle is to be sctrolled.

4~74 GRiD~0S Reference

O

.

HinScrollidindow

PROCEDURE WinScrollWindow (VAR r: Rectangle;
dir: Direction;
distance: Integer);

Purpose and Operation

The procedure scrolls the entire window in the given direction by the distance
given in pixels. The window will leave an empty area when it scrolls away

- from its location. WinScrollWindow returns the coordinates of the empty area

as the rectangle r, without modifying the area, so that the application can
update the area. Anything scrolled beyond the window bounds will be clipped.

Note: The rectangle r, which you specify in window-relative pixel coordinates,
acts as an output parameter only. It returns the rectangular coordinates of
an area that the application should update. The procedure needs no input
parameter for the window bounds because it obtains them directly.

Parameters

r == 0On return, defines the rectangular open area freed by the scrolling that
can now be updated by the application.

dir -~ the direction {(up, down, left, right) in which the window is to be
scrolled.

distance -- the number pf pixels that the window is to be scralled.

Procedures and Functions &-75

HWinSetAlternateWindow
PROCEDURE WinSetAlternateWindow {alt : WindowRegionPtr); C
Purpose and Operation
This call forces all subsequent window calls to be performed on the alternate
window specified., The alternate window must be in the host screen format. If
not, then this routine does nothing. If the WindowRegionPtr is NIL, then the
screen is assumed.

Paraneters

alt -- specifies the pointer for the alternate window.

HinSetllip
PROCEDURE WinSetClip (VAR r : Rectangle);
Purpocse and Operation

Sets a clipping rectangle within the window boundaries. This clipping is in
addition to the clipping performed automatically at the window boundaries.

Note that the clipping rectangle is defined in pixel coordinates ~- it is
independent of the visible and constraint parameters defined by common code
routines for tables, menus, and forms. (

This procedure makes displaying multiple views quite easy. For example, in
displaying two different views from the same application, each view would draw
an entire window full, just as if it were the only view. But the clipping
window would be set to different parts of the screen for each view., VYou only
modify the clipping to display different views; you need not modify your
window display code.

Parameters

r -- on entry, the coordinates defining the boundaries of the clipping
rectangle being established., On return, the coordinates of the actual
clipping rectangle established; the actual rectangle may differ from the
specified rectangle since any portion of the rectangle lying outside the
window boundaries is clipped.

t~-74 GRiD-05 Reference

O

HinSetFont

FUNCTION WinSetFont (font : FontPointer;
VAR info : FontlInfoRecord;
count : Word): FontPointer;

Purpuse and Operation

This function sets the designated font as the new font. The variable info
can be examined upon return to check the characteristics of the current
font. The function returns a pointer to the font that was loaded prior to
this call; that is, a pointer to the previous font. The format of the
FontInfoRecord is as follows:

FontInfoRecord = RECORD
charWidth : Byte;
charHeight : Byte;
lineHeight : Byte;
baseline : Byte;
END;

FontPointer = “Byte;

NOTE: The four bytes in this record can be examined directly using the
function calls charWidth, charHeight, lineHeight, and baselLine described
earlier in this chapter,

Paramsters

font -- a pointer (obtained from the function WinLoadFont) to the font that
is to be set as the current font., 1If font has a value of zero, the
system font in PROM is set. If a Null pointer is specified, the current
font is left in place and info on the current font is returned.

info -~ the four byte FontInfoRecord describing the dimensions of the font.

count -- determines how many bytes of the FontInfoRecord will be returned
in the variable info. Ffor example, if count has a value of two, only
charWidth and charHeight are returned.

Function Return

font -- a pointer to the previous font. You should save this pointer so
that you can later restore the initial font before exiting.

Procedures and Functions &-77

WinSetWindow
PROCEDURE WinSetWindow(VAR w: Rectanglel;
Purpose and Operation

This procedure changes the size and location of your current window. It
sets the window size to the rectangle it receives as an argument. The
additional clipping rectangle within this window is reset to this size too.

WinSetWindow is the only procedure that requires absolute screen
coordinates. The rectangle must be defined in absolute screen coordinates
because no window-relative coordinates are valid for this window until the
procedure has finished. Windows larger than the display screen boundaries
(sereenHeight by screenWidth) will be clipped. You must leave a single
pixel space on all four margins if you want a frame -- this procedure can
claim the outermost absolute pixel positions if you request it. However,
you must call WinFrameWindow to actually draw the frame.

4-78 GRiD-DS Reference

APPENDIX A. COMPAES KEYBOARD CDDES

Table A-1 on the following page lists all the hexadecimal codes that can be
generated from the Compass keyboard. Sinte various cambinations of the CODE

and SHIFT keys are used in BRiD applications, all of the codes that result
from the key combinations are shown in the table.

i.2eyboard Codes

Tahle A-1. Compass Keyboard Codes

CDDE-
Key Unshifted SHIFTY CODE CODE-SHIFT CTRL SHIFT-CTRL CODE-CTRL SHIFT-CTRL
27 () 22 (") 50 (') SC (\) 07 (BEL) 02 (5TX) 00 (NUL) IC (FS)

. 2C () 3C {Q SB ([} 7B ({) OC (FF) iC (FS) 1B (ESC) 1B (ES :
= 2D (=) 5F (_) &b 7F DEL 0D (CR) 1F {(us) BD 1F (us}
. 2E (.) 3E {>) SD (1) 7B (}) OE (S0} 1E (RS) 1D (GS) 1D (GS)
/ 3F (/) 3F (?) BF BF OF (51 IF (US) 9F F

0 30 (0) 29 () Bo A9 i0 (DLE) 09 (HT) 90 89

i 31 (1) 21 () B1 Al 11 (DC1) 01 (S0H) 7t B1

2 32 (2) 40 (@) B2 Co 12 (DC2) 00 (NUL) 92 80

3 33 {3) 23 (i) B3 A3 13 (DC3) 03 (ETX) 23 B3

4 I3 (1) 24 (%) B4 .1} 134 (DES) 04 (EOT) 94 g4

9 35 (9) 25 (1) B4 AS 15 (NAK} 05 (EN@) 25 Bs5

& 36 (&) SE (M) Bé DE 16 {(SYN) 1E (RS} 95 9E

7 37 (7) 26 (%) B7 A& 17 (ETB) 06 (ACK) 97 Bé

8 38 (8) 28 (%) BB AA 18 {(CAN) 0A (LF} 28 BA

9 37 (9) 28 () B9 A8 19 {(EM) 08 (BS) 99 a8

3 IB {3) JA (3) JE (*) 7€ (1) 1B (ESD) 1A (5UB) 1E (RS) iC (FS)
= 3D (=) 2B (+) BD AB 1D (6%) 08 (VT) V] as

A 61 {a) 41 (8) El El 01 (50H) 0t (SOH) 81 81

B 62 (b) 42 (B) E2 £2 02 (5TX) 02 (5TX) 82 82

c 63 (c) 43 (L) E3 E3 03 {ETX) 03 (ETY) 83 83

] &4 (d) 44 (D) E4 £4 04 (EOT) 04 (EOT) 84 84

E 65 (e) 45 {E) ES ES 05 {(EN@) 05 (EN@) 85 85

F L& (f) 44 (F) Eé ES 0& (ACK) 06 (ACK) 84 86

] &7 (g) 47 (B) E7 E7 07 (BEL) 07 (BEL) 87 87

H 48 (h) 48 (H) EB £8B 08 (BS) 08 (BS) 88 as

1 69 (i) 49 (I E? EY 09 (HT) 09 (HT) 89 B89

J bh (i) 4A4 (J) EA EA oA {LF) 0A (LF) BA 8A (:::
K 4B (k) 4B (K) EB EB 0B (VT 0B {VT) BB 8B

L 6C (1) 4C (L) EC EC 0C (FF) 0C (FF) ac 8C

M 40 (m) 4D (M ED ED 0D (CR) 0D {CR) 8D 8D

N 6E (n) 4E (N) EE EE 0E (50) 0E (50) 8€ 8E

a &F (o} 4F (0} EF EF OF (81} OF ({SI) 8F 8F

P 70 (p) 30 (P) FO FoO 10 {(DLE} i0 (DLEY 0 g0

2 71 (q) 51 {@) Fl Fi 11 (DC1) 11 (DCD 1 1

R 72 (r) 52 (R) F2 F2 12 (DC2) 12 {DC2) 92 92

5 73 (s) 33 (S) F3 F3 t3 (DC) 13 (BC3) 93 93

T 74 (t) 54 (T) Fa Fa i4 (DCH) 14 (DC4} 94 94

1] 75 (u) 35 (U} FS FS 15 (NAK) 15 (NAK) 3 95

v T4 (v) 36 (V) Fé Fb 16 (8YN) 16 (5YN} 26 24

W 77 (w) 57 (W) F7 F7 17 (ETB) 17 (ETB) 97 97

X 78 (x) 58 (X) F8 FB 18 (CAN) 18 (CAN)} 8 98

Y 79 {y) 3% F9 F9 19 (EM) 19 (EM) 99 29

Z 7A (z) Sa (1) FA FA 14 (5UB) A (SUB} 94 9A
BACKSPACE 08 ca 88 8A 08 (8% 8B 88 8A
RETURN 0D ch 8p ac 0D (CR) 8D 8D ac
DownArrow 4 CE D2 D& B4 BE 92 g6
ESC 1B 1B 9B 2R 18 (ESC) 1B (ESC) 28 2B
LeftArrow Cé bo D4 D8 B& g0 94 98
RightArrow C7 Di DS D9 B7 91 25 29
Spacebar 20 {5P) 20 {5P)y 20 (5P) 20 (SP) 00 (NUL) 00 (NUL) 00 (NUL} 00 (NUL)
TAB 09 ce 89 8B 09 89 8¢ BB
UpArrow Cs CF DI D7 BS 8F 93 97 <::

4-2 GRiD-05 Reference

INDEX

A

Absolute screen coordinates, &-78

Access aodes, 6-12

Accessing files, 3-é

Activating devices, 6-8

Active device table, 3-5, &-B8

Adding devices, 3-5, 4-8

fillocating seaory, 2-&, 4-10
for windows, 4-b0

Alternate windows, 4-2
allocating meapry for, &~40
setting, &6-77

Arguments, command line, &-26

Attaching a file, 3-5, &6-11
in darectory mode, &-44

Baseline, 4-4, -2
Bit-bucket (bh) device, 3-3
Boolean data type, 1-¢
Boot file, &-30
setting, b-41
Bubble asemory device, 3I-3
Buffer space for files, 3-&
Buéfers,
allocating for files, 4-39
flushing, 3-6, £-23
switching, 4-55
Built-in font, 4-1
Byte data type, I1-6

cC

Calling device drivers, &-13
Calls, suemary of, (-2
Changing file extensions, 3-6, 6-12, b-14
Changing file titles, 3-4
Changing passwords, &-12
Char data type, 1-&
Character
fonts, 4-3
graphics, 4-3
height, 4-3
width, 4-3
Characters,
delimeters in pathnases, 3-2
delineters in arguesents, &-26
drawing, 4-45
erasing, #-3, b-b7
inverting, &-71

CharHeight, &-2
CharWidth, &4-3
cti (console input} device, 3-3
Classes pf sessages, 2-4
Clipping, 4-1
Clipping rectangle, 4-3, é-43
resetting, &-73
setting, 6-76
Closing files, 3-6, 6-15
co (console output) device, 3-1
CODE character code, &4-3
Codes, systeo error, &-18
Command line, &6-355
getting arguments from, 6-2&
Complete directory entry mode, 3-7
ConCharln, &-3
ConCharOut, 5-2, 6-1
ConDefCsr, &-4
ConHexDut, 6-4
ConkeyPressed, 5-2, 4-4
Conlineln, -5
ConlineDut, 5-2, &-5
ConHoveCsr, &-5
Connecting to files, 3-5
Connection, &-59
Connections to files, &-11
severing, I-4
ConPeskChar, 5-2, 6-&
ConResetDisplay, &-4
Console i1nput (c1) device, I-1
Console ocutput (co! device, 3-3
Console routines, 5-1
Ceonsole state, &4-7
Converting screen ipage files, 4-2
Coordinate system, window, 4-35
Coordinates, absolute screen, 6-78
Copying
rectangles, 6-63
remcte rectangles, 6-44
Creating
processes, 2-3, b-14
sepaphores, 2-5, &-17
CTRL character code, -3
Current file position marker, 3-&
Current file position, 4-58, 5%,
Current printer, &-30
Current process, 2-2
Current window, 4-2
Cursor, 5-1, 4-2, 4-4
turrent locatiaon, 6-7
moving, &-5
turning off, &-é

GRiD-0S Reference Index-1

D

Data structures, 4-5
Data types, 1-é
Deactivating devices, 6-47
beallocating memory, 2-7, £-23
Decoding exceptions, &-18
Default window, &6-70
Delaying a process, é-1%
Deleting

a filey, 3~4, 6-20

a process, 2-3, &-21

a sesaphore, &-21
Delimeter characters,

in pathnames, 3-2

in arguesents, b-2&
Detaching files, 3-&, 4-22
Device managesent, 3-1
Device status, 6-33

setting, &-52
Devices,

adding., 3-5. &-8

deactivating, 6-47

list of, 3-3

resote, 3-4

resoving, 3-5, &4-47

table of active, 3-5
Direction data structure, 4-5
Directories, 3-1

operating on, 3-7

reading, b6-43
Directory file password, 3-7
Directory mode, attaching in, 6-43
Drasing

characters, 6-65

lines, b-bb

pixels, b-&b
Drivers, device, 6~13

Erasing

characters, 4-3, b-47

lines, 6-67

pixels, b-6B

rectangles, 6-&8

windows, &-56%
Error nusbers, system, &6-1B
Examples of message transfers, 2-4
Exception, decoding, 6-18
Executing processes, 2-3
Exiting a program, 6-23
Extensions, of file names, J-4

changing, 3-&4, &-12, &-14
Extent, check window, 4-70
Extra floppy disk device, 3-3
Extra hard disk device, 3-3

Index-2 GRiD~-05 Reference

F

File
directories, operating on, 3-7
extenstions, changing, 3-&
position, current, 6-5&, 59
position marker, 3-6, 6-49
status, setting, 6-52
subjects, J-4
system, 3-1
titles, 3-4
titles, changing, 3-&
start-up, 6-30
File atcess, terminating, 3-é
File buffer space, 3-é
File connection
sodes, &~11
severing, J-é
Filename extensions, changing, &-14
Flles, accessing, 3-&
attaching ta, 3-S5, 6-11
closing, 3-&, &-15
connecting to, 3-5
deleting, 3-4, 6-20
detaching, 3-&, &-22
kind, 3-3
nanageaent calls, overview, 3-5
manageaent, 3-1
pathnames, 3=2
opening, 3-5, &-40
pperating on, 3-5
passwords, J-3
reading, 3-&4, 6-43
renasing, &4-4B
seeking in, 3-4
truncating, 3-&, &6-56
User*Profile™, 6-30
writing to, 3-4, &-59
Floppy disk device, 3-3
Flushing buffers, §-23
font, &-2
built-in, 4-4
setting, 4-41
systea-wide, 4-30
Fonts,
character, 4-3
loading, 4-4, 6-73
setting, 4-4, 6-77
Forking a process, 6-24
Forsat
host screen, &6-74
of sessages, 2-5
of screens, #-2
window, 4-&
frane,
drawing window, b-59
screen, &4-30
setting, 6-41
freeing mesory, 2-7, 6-23

S

GetConspleState, 5-2, &-7
Getting

arguments from command line, &-24

current prefirx, 6-29%

seapry size, 6-32

sesory status, 4-28

status information, 6-33
GPIB

address, 4-8

device, 3-3
Graphics,

character, 4-3

line, 4-4

pixel, 4-5

text, 4-3

window, #&-1
GRiD format windows, #-2, &-60
Gki1DiRE, 3-7

directory password, 3-B

H

Hard disk device, 3J-4
Height
of characters, 4-3
of lines, 4-4, 6-4
Hierarchical file systea, 3-I
Host screen forsat windows, 4-2, &-80, -44, -T&

10, system, &-35
Initializing windows, &-70
Integer data type, 1-6
Inverting

characters, 6-71

lines, &-71

pixels, &4-72

rectangles, &-72

K

Key, window update, 6-70
Keyboard characters, 6-3
inputting, 6-5
Keybpard cedes, b-&
¥eyboard queue, b-b, 6-70
Kind, changing filenase’s, &-14
Kinds,
file, 3-4
in file pathnames, 3-3

L

Length, maxisum of pathnames, 3-3
Line

graphics, 4-4

height, 4-4
LineHeight, &6-é
Lines,

clipping, 6-62

drawing, b6-&b

erasing, &-67

inverting, &-71
Loading fonts, 4-4, 6-73
Longint data type, 1-&

™

Managing devices, 3-}
Hanaging memory, 2-b
Warker, current file position, 3-&, &-49
Matching wildcards, 6-38
Maximsum length of pathnamses, 3-3
Memory sanagesent, 2-4
Hewmory
allocating, 2-4, 6-10
allocating for alternate windows, 4-2
allocating for windows, &-40
bubble. 3-T
freeing, 2-7, 6-25
size, 6-32
status, 4-2B
Message
classes, 2-4
format, 2-5
transfer exasple, 2-4
Messages,
receiving, &6-44
sending and receiving, 2-4
sending, &-50
Mode, directory, 3-7, 6-43
Modem device, 3-4
Hodes,
access, 6-12
file connections, 6-11
ftodules, overlay, 6-4Q
Hulti-tasking, 2-1
Hultiple rectangles, 4-3

GRiD-0S Reference

-

Inde~-7

N OsSend, 4-50
passing notes with, 2-5
DsSetPryority, &6-51

Names, DsSetStatus, 3-6, 6-52
deleting, 6-4é 0sSignal, 2-7, b-53
iooking up, &-37 passing notes with, 2-4
registering, 6-37, b-4b OsSwitchBuffer, 6-55

Note parameter, 6-27 : DsYruncate, 3-4, &-5&

Note, passing with signals, &6-57 DsWazt, 2-7, 6-57

Notes, DsWhoAm]l, b-59%
passing with OsSend, 2-5 OsWrite, 3-b, &-39
passing with DsSignal, 2-é Overlays, b6-40

Overriding type checking, 1-&
Overview of file calls, 3-35

(n)
P

Opening files, 3-5, &-3%
Operating on files, 3-5
Organization of file systes, 3-2 Parameter passing with Bytes data type, 1-&
OsAddDevace, 3-6, b-B Partial directory entry aode, 3-7, 6-43
OsAllocate, 6-30 : Passing notes
OsAttach, 3-5, &-1% with OsSend, 2-5
OsCaliDriver, &-13 with 0sSignal, 2-4
OsChangeExtension, 3-&, &-14 Password
OsCiose, 3-6, #-15, 6-22 to directary files, 3-7
fsCreateProcess, &-i& changing, &-14
OstreateSesaphore, &6-17 Passwords, 4-12
DsDecodeException, &6-18 in file pathnases, 3-3
DsDelay, 4-19 Pathnases, 3-2
DsDelete, 4-20 aaxisus length of, 3-J
OsDeleteProcess, 6-21 pid, 6-14, 6-24
DsbeleteSemaphore, b-21 Pixel graphics, 4-5
psDetach, 3-&, &-20, 4-22 Pixels, 4-1, 4-4
DsExit, 6-23 drawing, &-6&
DsFlushAllBuffers, 3-4, 6-23 erasing, &-68
OsFarkProcess, b-24 inverting, &-72
DsFree, 6-25 Plotter,
OsGetArgument, &-26 current, 6-30

switching buffers, 6-55 device, 3-4
OsGetMenStatus, 6-28 setting, 6-41
OsbetPrefix, 6-29 Point data structure, 4-5
OsGetProperty, &-30 Pointer data type, 1-4
DsGetSize, &-12 Portable floppy device, 3-%
DsGetStatus, 3-8, 6-33 Position, current #ile, 6-56, 59
DsGetSystealD, 6-15 Position marker, 3-4, 6-49
OsGetTine, &-3& Preemptive scheduling, 2-2
DsGetWark, &6-37 Prefix, getting, £-29
OsLookUpName, &-37 current, 4-30
DsMatchWildcard, &-38 device, 3-4
DsDpen, 3-5, 4-3% setting, &-41
DsOverlay, 6-40 Priority, process, &-51

OsPutProperty, b6-4!
DsRead, 3-6, &-43
Oskecerve, &-44
OsRegisterName, &-46
OsReapveDevice, 3-35, 6-47
OsRename, 3-&, b-4B
DsEeek, 3-6

DsSeek, 46-49

Priority scheduling, 2-2

Index-§ GRiD-05 Reference

scheduling, 2-2
state diagram, 2-2
current, 2-2
definition of, 2-1
delaying, 6-1%
forked, 4-21
ready, 2-2
receiving, &-44
running, 2-3
waiting 2-3
Process 1D, &-16, 6-24
detersining, 6-59
Process priorities, setting, &-51
Processes,
creating, 2-3, b-1é
deleting, 2-3, 6-21
executing, 2-3
exiting from, 6-23
forking, 5-24
waiting, 5-57
Processor sanagesent, 2-1
Profile, User, 4-30
Properties,
exasining, &-30
setting, b-41

Queue,
keyboard, &-4
aessage, 2-4

Reading

directories, 4-437

files, I-&, 6-43
Ready

process, 2-2

state, 2-3, &-16, 4-24, 6-57
Receiving sessages, 2-4, b-44
Rectangle

data structure, 4-5

setting clip size, &-74
Rectangles, 4-1

clipping, 4-3, 6-563

copying, é-43

erasing, b-48

inverting, 6-72

rempte, 4-2, b-b4

screlling, 4-3, 4-74
Region, window, &-60, &4
Registering names, b-44
Rempte devices, 3-4
Reapte rectangles, 4-2, b-b44

Reaoving devices, 3-3, &-47
Renaming files, b-48

Repeated character code, &-3
Resetting clipping rectangle, 6-73
Root phase, 6-40

Routines, console, 5-1

Run state, 2-3

Scheduling processes, 2-2
Screen, 4-1
Screen coordinates, absolute, &-78
Screen format, 4-2, 4-&
Screen foreats, translating, &-55
Screen frame, 6-30
setting, 6-41
Screen image files, converting, 4-2
Scrolling
rectangles, 4-3, 6-74
windows, 4-2, &-75
Seek, 6-34, 4-49
Seeking in files, 3-&
Sepaphore, 6-57
jdentification number, &-17
Seaaphores,
creating, 6-17
creating and using, 2-5
deleting, &6-21
signalling, 6-353
Sending aessages, 2-4, &-350
Serial device, 3-4
Setting
alternate windows, &-74
clipping rectangle size, &6-76
fonts, 4-4, 6-77
process priorities, &-5i
window size, 6-78
Shells, device drivers,&-13
SHIFT character code, 6-3
Bhort Strings data type, 1-7
sid {semaphore 1.D), 2-6, 4-17
Signalling
processes, 2-7
seaaphores, 6-53
Size of windows,
determining, 6-70
setting, 4-78
Size, sesory, 4432
Start-up file, 6-30
getting, &6-4}
State diagram for processes, 2-2
Status
inforaation, 6-33
aemory, 5-28
setting, 6-52
Structures, data, 4-5

8R1D-0S5 Reference

Indei -9

Subjects, 3-1, 3-4
Susmary of system calls, 1-2
Switching buffers, &-535
Systenm

calls, summary of, 1-2
Eysten

prror nusbers, 4-18

10, &-335

properties, setting, 6-41

T

Table of active devices, 3-3, 4-8
Tersinating

f1le access, 3-é

processes, 2-3
Text graphics, 4-3
Tiee, 6-30

getting, &-3&
Time limit, b-44, 8-57

OsDelay, 4-19
Time offset, setting, &6-41
Titles, 3-1, 3-4

changing, 3-&
Transfer of sessages, example of, 2-4
Truncating fi1les, 3-&, 6-5é
Type checking, overriding, l-é
Types,

Bytes, -4

data, 1-6

u

Update bey, window, 6-70
Usar~Profile™, &-30
Using semaphores, 2-5

v

Virtual {file systes, 3-!

W

Wait state, 6-19, 6-44, 6-57
Waiting process, 2-2, 6-57
Width of characters, 4-3
Wildcards, matching, 6-38
WinAljocateWindowMenory, &4-40
WinClipLine, b6-&2
MinClipRectangle, &-63
WinCopyRectangle, b5-463

Index-b GRiD-05 Reference

Windaw

coprdinate systes, #-5

pxtent, detersining, 4-70

forsat data structure, 4-6

graphics, 4-1

isage, 4-]

update key, &-70
Windows

current, 4-2

default, 6-70

allocating, 4-2

alternate, 4-2, 4-60

erasing, 5-69

frasing, 6&6-69

BRiD format, 6-40, &4

host screen format, 4-40, 64

scrolling, 4-2

scrolling, &-75

setting alternates, 6-7&

setting size of, &-78

setting up, 4-1
NinDrawChar, &-65
WinDrawLine, b&-bé
WinDrawPixel, b&-b6
NinEraseChar, &-47
WinEraseLine, &-67
WinErasePivel, 6-48
WinEraseRectangle, 4-68
WinEraseMindow, &-49
WinFrameWindow, &-49
WinBetWindowEatent, &-70
WinlnitDefaul tWindow, 6-70
#inlnvertChar, 4-71
WinlnvertLine, 6-71
#inlavertPixel, &-72
WinlnvertRectangle, 6-72
WinLoadFont, 4=73
WinResetClip, 6-73
WinScrollRectangle, &6-74
WinScrollWindow, 6-73
WinSetAlternateWindow, 6-7&
WinSatClap, &6-7&
WinSetFont, 6-77
WinSetWindow, &-78
Word data type, 1-b
Wor¥ device, 3-4
Work, getting, &-37
Writing toc a file, 3-4, 6-5%

