COMMON CODE REFERENCE

JUNE 1984

COPYRIGHT (:) 1984 GRiD Systems Corporation
2535 Garcia Avenue

Mountain VYiew, CA 24043

{415 961-4800

Manual Name : Common Code Reference
Order Mumpber: 29200-44
Issue date: June 1984

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopy,
recording, or otherwise, without the prior written permission of GRiD Systems

Corporation.

The information in this document is subject to change without notice.

NEITHER GRiD SYSTEMS CORPORATIONM NOR THIS DOCUMENT MAKES AMY EXPRESSED OR IMPLIED
WARRANTY, INCLUDING, BUT NDT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABRILITY, QUALITY, OR FITMESS FOR A PARTICULAR PURPDSE.
Corporation makes no representation as to the accuracy or adeguacy of this
document. GRiD Systems Corporation has no obligation to update or keep current

the information contained in this document.

BRiD System Corporation’s software products are copyrighted by and shall remain

the property of GRiD Systems Corporation.

The following are trademarks of GRiD Systems Corporation: GRiD, Compass Computer.

The following is trademarks of Intel Corporation: Intel.

BRiD Systems

@'

O

IMPORTANT NOTICE —-- PLEASE READ

This is an interim version of the Common Code Reference manual. While it
provides a comprehensive reference to the functions and procedures
supported by the Common Code, it does not yet include examples for all of
the functions and procedures. An enhanced version of the manual will be
available in several months that will include many example programs to help
you in implementing your own applications using the capabilities provided
by the Common Code. To receive the enhanced version of the manual, please
fill out the form below and mail it to:

GRiD Systems Corporation

Attn: Technical Marketing Services
25335 Garcia Avenue

Mountain View, CA. 94043

Since the entire manual will be reprinted and redistributed, this alsop
gives you a chance to provide some valuable input into the next edition.
Any comments, suggestions, or corrections that you can give us to improve
the next edition are hereby solicited and will be incorporated if possible.
Please use the space below for your comments.

R R R R R R R R R R R R RN R R R R R R R R R R R R RN AR R RN R R E R R R R RN

Please put me on the distribution list for the final version of the Common
Code Reference manual.

Name

Address City State lip

Suggestions/Corrections/Comments:

S

TABLE OF CONTENTS

ABDUT THIS BOOK

CHAPTER {: INTRODUCTION

The Common Code: A Common User Interface .oeeveon. 0000000000008 000000
String Manipulation ...veeeveesocceasiascsncnaanas SEbOBDo0o0 SrEO00 vee
Manus antd FOrmS seererreseracnesassensarevancessnaesanesoasnssanansess
Field Formattingccereernvnvrecroavscccnssssssanssasannsnansa o1

Tabular Formatting

Hierarchy of the Common Code

CHAPTER 2: THE USER

--

INTERFACE

The Dperating Environment

CODE Commands
Messages
The Flow of Control
Common Commands
Menus and Forms
Menus
Example.........
FOrms .evamrense
Example..ceeas..

Formatting Information
Fields
Tables

Editing Information

--

Cursor Control

CHAPTER 3:

Standard Data Types
The Bytes Type

DATA TYPES

Common Code Data TYPES teruweewrvassnocntennnooenenarsaacansssrensasaes

- b
11

[y
1t
B B0l Y e

(S
[

A G Gl B =

hJi‘Jl"JI’-iJl'JI"JI‘J

[
(44

CHAPTER 4: COMMON PROPERTIES

Interchange Filesvvrevurirresrasrnnnceaas
Data Records ...ceeveacrnncencscvsnanssnonavas
FProperties and Optionscccevecencceavacas
Common Properties Recordscececvecnucaannn

Author Recordciveuunsn 40006000 000000

N N A

Font Properties and Print Options Recordceveeirnernsracsnncnaees

Font Record ...eeeecnrennnns 00006 0aa000a0
Print Options Record 0000000 acoas

Text Hesding Record 800000000 0000a06a008000000a0

Field Charactericstics Fecords ...-ccuesrvenuwncae
Standard Field Record ...cceccvrvcnarcncenas
Column Field Record AUDODaG000G00000
Row Field Recordcocinucencnns ~Oa0a 0800
Column Width Recordivciacnacsancaas A0

Row Height Record 000000000000 0000D00000000000000000000

Cell Field Record ..ccsvecsrssensocanscccnsa
Tahle Size Record MU0 C000CO00a00000
Application Properties Recordsccevevavon-
Properties Records Common Code Routines

CHAPTER 5: STRINGS

are e s s e Reaanw

Data StrUuUCtUrES ... cerevsrerncavacssassssassssaaasasssaronsnnsnsansonsas
The String ROULINGS ... ceercennaranerrasrnonssscrenssascsvannsasnans

Allocating and Deallocating Strings
Comparing Strings ..eeeeeaerroncasnassaasres
Modifying Stringsc..cvcvescasscnaranns

PR rana s e

Converting String TYPES .t.iceecivasresvasrrareeernancsossssssnnnans .
Micscellaneous String Routines v.occecervecceacscsssossoaransannnans

CHAPTER 6: COMMANDS, MESSAGES AND PROMPTS

COMMENTS + e cvenenonrvinronsacasssnsssssossnasaarsanansssarssnacsnasssnca

Messages and Promptecovvenuanacs 00000000
Data STructures ..ceuvecereanucnscnsnssrranaas

Message and Prompt ROULINEEiceveeneivacoonssncansananronnesansns

CHAPTER 7: BYTES

Byte ROUtINES ..vivcessncasrnonvasassssrnnaas o n08 0000008858005 00080

CHAPTER B: DATA DRIVEN MENUS/FORMS

OVervViBWM .viceaveoorasacsusnasrsasnsasaasssasssnananssasssrnsnacnsasssas
Data Driven MenUS ...c.eesreemrsasassnassassanassonaonsacastanssnnss
Menu Data Structures and TYPES wveecnsrerrerereccsiscsosacnsssons

Data Driven Menu ROUEINES ceccvearnavansanan

vi

[

-b-f'.b-h.b-h-b-b
!
E RCNE IS v) B O I R T NI 1

Lﬂl‘JIL"lLll'IU'IUIUI
=l ed by

8-1
B-2
B-3
8-4

@

O

O

&

Data Driven Menu Example . .oiieiennrenninsnorrssessosovnaanssannsne 8-9

Data Driven FOrmeE ..cceenececnarocaeesonunasncansssonnsnsasnanarsnss 8-6
Forms Data Structures and TYPES cveeiesrrccncrnssnrenosssaceonncs 8-8
Data Driven Forms Routinesc.eerreerireooncsenasonsnnasnvasns g-12
Data Driven Forms Exampleeeeeevacnsasscasanossosaassassnannss B-13

UL R == G 008 00 0 0aa 000100 060000 DO G EA 0800006 0668005000 88808000 8-16
Fathname Defaultest m i iaia s eirvrrrrrarranrarersnsres 8-19
File Form Constants and Bata Types ... ciiiieiniiricicrneecnannnes 8-19
File FOrm MRSSa0BE voeetucecsnnernasnnarancastossasssnasaancannss 8-22
Typical FileFormConfirmed Settings c.vevcericvseraasonanrncannnns g-22
Exchanging APPlications ..eieieresacnionnesveotonciocsscnnnsaanenns B-23

CHAPTER 9: FONTS

Font-Felated ROULINEE ..u.ciicinercernonracrcssonsnsasnssonreanscnce g-1

CHAPTER 10: FIELDS

ConGtants ..ueenraresnnaraceeacarsasssscenasaosesasroesoccsnansasanneses 10-1
Data Structures c.vvreeverrvrvranonesoancsns NOOGCO0bO000G00GE0006000 10-2
Field ROULINES uicicrencnccicnaasnecrscrerscrsnranenrssanarncrrannanss 10-5

EHAPTER 11: TABLES

Constants ...crceacscrrranrssnnncnaas 0000000006 0000000 800050000 00000 . 11-1

Data Structures ... veerrieiirnenrcosnsssnrsnnenns 0000000 500000000600 11-2

UE] JHEN R el (=N Ao a0 ooo8 08000000000 a00o0 000006 00a000000000000 0080060 11-8
Allocating and Disposing Tables .iesceesvncovasnoncsna S00G0000A000C0 11-8
Editing Tables ...ivvevesrecessrrssavcnnacansa 0000000000000 00 ... 11-8
Specifying Cells ...cvucicenanens 0Aa000c00 600000000 0006000900000 o 11-9
Drawing a Table ...iovcicaassenssessacassssacsas 0000000000000 000000 st
Inverting a Table ..ccevereasccsnsnncennss 00000 000G0000000000000 .« 11-10
Highlighting a Table or €ellcecuereervrannvsorancrnnasannsanses 11-10
Scrolling seveaees 8000050 00000000000 00000000005000G00D008000000000 11-10
Coordinating Text and Cell Selectionscivvennscnnncnennnans 11-11

CHAPTER 12. COMMON CODE FUNCTIONS AND PROCEDURES

AppendAnyYChariiieesanssosesasssnscssncsana 1000000000000 a000 e 12-2
AppendChar..cveceetssvansaansans 0000000006 00000000000000000e0A000000 12-2
AppendString. .- cvecrerrrarerrrrsrnrrarennras 30000000000 G00 H00o000000a 12-3
{2 A e o0 A N WS S N DS SR D a6 a0 00 c 00 C 0 0aD o000 a0 00 aBa00aaa00 0000 0008008000 12-4
| A N S S B e 000 000800880600 000 0acad00 800008 N0CG00000000000Ga0000 12-5
CmdMedialsagB. e eeeusovensvennaa 50008000000 0000000000000000080000000000 12-6
CmdProperties. vvuresrerrearrasascancracanannarans NOCSD00000000060 AG0ag iEE
CompareBytes......... 000000GG000000000000000005000000 0000000u00000000 12-8
(Ba], e =l et A B o000 06 0000008060000 00000000000 0405800600000 00600000 12-9
(e B SR8 6 606000000008 0000000000000 00008000000a00000808 00000000000 12-10
ConCatStrings....vcvnvucunriianeaas 0000000d0G0060000000G000GA00000000 12-10
(Bl) e]S 550 8008000000000 000600a000000800800000000880000000000008 12-11

vii

CopvString......

DataFormConfirmed. .cvaveeecn.
DataMenuConfirmed. . v oo acnsonavesasrassssansassssrnasassnsanesnsouns

DE]Ct BB Yt ueseeraavaarssncannsvassrnassasssasacsrsssansssosnsaasesnan

DeleteFromBtring....cvevcreccsvonsaas

EqualStrings....

EvactCopvOfString.......

EupandHeading. ..
FFEyzecuteCommand

FileFormConfirmed.......
FinatizePropertieslength.....

FindByte........

F1dD1mH1gh11uhtFleld........

FldDrawCursor...
FldDrawField....

FldDrawFieldChars........

semsscenacroenae so R NS I BB ERNEE YRS se RSB E SR
a8 F P @RS s R RS Us RS eeAFFaR IR AavVEScadkeNAFRARERSERS
P T R I A A R A R R BCIE B RV BB BB IR R I

R RN R I N N N A R

FldEditField....veoveerananes

FldFormatlLine...
FldHilightField.
FldinsertinField

FldInvertChar...oeeresccccerscsancsans

FldReadkey......

--------- P4 s aduuBBPaIEFE AR FERFER AR

e s 8 srwemens ¢ W ewse s PR APERLERSRFsEE N
IR I BN # 9 9 Paaarees s s TER IR PSS
[I N R R A A A A R R R R B LI R LR

Taawsree PP

R R R I I B A AR R B B BB R R RN B B

RN R R I I A A A A A ST SRR AR A B A N

----- P N N A N A R RN IR I I RN A

FlOErasel il SOl . s eeerrersecscassncsnassusossrsassannassarassnnssrsarsnss

MR R R RN N N A A B A R I R R B N N L LI A L

aEzsss v e e RAsE s P I I RO SR SRR B B A R RN LR A B

FldSetCursor.eeeenersovveoansa
FldSetPD5. ccvenvronecesasasssnasanusnnsnsosennen

FldStartkeys....cvesveratvvcaneneanne

FONtCOUNt .o s s vnoveccesornorensecusscaasonsanassnsossannaanuacsnanasance

TR R I I A AR SR B RV A R A B N BN A

FontGetMceeceaseracscssacuassssarvansassans
FOntMthNamME. c s v v ecvesvacesoraacsaatossasnscncrsnsssnasansanrsnnsnassss

FontSethMamne.....

FreeStringsInDataForm....ciuareacerosnaanns SA0CCO0000000GD000a000000s

"e 4 S E N seaRT N OFE N SR eES

R R R R A A A A A A A BRI A A I R B S B I AL A I L I

FOntGetNEN. s vveveerermeracveusveuasasasseaaasosasvsonsssssasansnonnnsnas
FreeString. s cveceeacceeracsorasranarensseranisasssaasanssanssoncsasnos

GetMNestRecord.. cverersrererrrsnscacosnsaansannsansssncsssonssasssassas
GetVersionString. s csesersvcevecavoasnscasransssosnsaronsnunoussnarsonas

InsertBytes.....

InsertCharInString. oo evesrrvrravasvsnoronnnarcssssasssssncnccscsasan

InsertInString..

e EEEIBEddF LS aSsESRFEENARSEY aERCRFFAndFfRAREAFRIINAEFEERD

R N I N R R A R A R R A A N L R Y AU BRI B N B]

Integer ToString.ceseesasascnosscenoeneasarnsssoonsssannsnssosnenannans

MOVEBYtEE. . cvvausncroasnoarosssnrarasaassasoanasassnssannsarssenccssa

MoveReverseByteS. i vvssesareracasasscscenasonnusarusrnosnnsassssnsaanes
Mol earMEESa0R. s ceverresnrirsacsoacssacsacnncnanansrrseruassassoavnna

MegClearPrompl..aseersaacaavenoarncssaassassaasnssnnnsnsennasssasnans

MsgEMit..oevoraorovsuarossncenosasanaannesaccnnna

MegInit.eeeccanceaarsaronsanuncnsusrrasscarnnccaasassnassaonanssases

MegInitiallUSagBesscsaureeneneseroncnnsrcasaasscsavorsannsanannonsssss
MsgShowDecodBd, s c v s vevsernersasncennarrcusrasssasncarraraasnsrnnanssens
MegShOWErrDr . e e s vecenarsoaserarsasansnsocnannsanassessrononarsasuscuanns

MsgShowMessage. .

MewString.......

viii

------ 4 64U BRI B E AN RS REEERI RN PR TP E R kY kBRI E SN RN

MegShowPrompt. .. i ieunsnncrecsenansasnsossnsccsssssasssacsannnanes
MRSt AackMEEEa0R. c it searernastsesvraraanaarruscacscancnnansennanne
MsgStackPrompt. ... ireurreverannacrannaens Chasssssasssacnscanstravas

12-11
12-12
12-13
12-14
12-14
12-15
12-13
12-

12-16
12-17
12-19
12-20
12-21
12-21
12~-22
12-22
12-23
12-25
12-27
i2-28
12-28
12-28
12-29
12-30
12-30
12-30
12-31
12-31
12-31
12-32
12-32
12-33
12-33
12-34
12-35
12-36
12-37
12-37
12-37
12-38
12-38
12-39
12-39
12-40
12-41
12-43
12-43
12-44
12-45
12-46
12-47
12-48
12-49

NewStringlit. . ceeeicrrrereeeracarnnvscnarvronsasrsnnasnanrseas samecasonna 12-49

Real ToOBtringues i sseuerosvaanseasssnersoacssssnanaosscnasasosusvaveannas 12-50
= = g om0 c00 00 cA0 0000000000000 080000000000000800000 A0000Do000 12-51
L s 8 B hd a8 00 En0 08000000080 0000580060000000000000600080a0600000 12-51
SkipPropertieE. ... v uaevassasrnsosnsransannrsasassaasnsancososennnas 12-52
String0DfFormitem......... B OnaC0obBobe 800008000000 00000000000000000000 12-52
StringTolnteger. .. oo riiriactracennssecerrssnncocnnaannassnscsans 12-53
StringToREal.see i eer e sancoansrsnesnasanconanretosanssasencssoanass 12-33
SUDPrOPErtY. e erseuvrereanssosoransnssancacasvsusstnassscananaanannss 12-54
I S S A S e S e a H oD B B OG0 000008 00ca0 000000000 bo0aa 0o oo oaaant 12-35
TBIAddCEY o . e o iipmic oo oo a simic s e ole e ale sla=isianiasaseeolen. HEAGE06080000 12-57
N S o a g o oo a0 a0a G000 oo baa 0080060000000 00000000000005000aG00
ThblCellOnRSCrEen. v et e s cassssscsannnssnuas Ba000Ca005000G000000000000a0 0 12-38
ThlChangeFielde. ..o nurresrrersrerinusvesscsrcnscaancanascuannsansrsns 12-58
ThlConfirmSelection. roeverersrracccstcnaracocesonasonncsssnsaanannnnes 12-59
ThlDimHighlightCell. ..o iesiiioressssarsananarunnssnccsncnnansrsnon vos 12-59
ThIDIcSpoSElOl cveinerunrrrrersrrsnensasnonancunsnsstasanaaucsunsnaansnse

Tl D SPOSE I BEMe s u s s sausssssvssssentssonsrsasasanmsassnsssarasasasennns 12-460
ThlIDisposeTable.vavrerrrerreranessoravrssncansonnacannsansnannnae veaae 12-60
ThblDrawbride e eeesevneseatoeseumrassassorosssanssssonanansne AOO0OD0a6a0 12-61
L e S S e B e e o 0 aE B a s Aada 0o oG EE0cnda0d060a8000000000000 ve. 12-61
ThlEditTabl e e eresncvrrmccesnasoorancnansasansaasncanssuasnsnuannns 12-462
1 e T N = R S S S S 0 s Ao G B 000 000G 00000 0a0 000 Ha0 004000800 00000000600 08 12-64
ThlEscapeMode. s cvececasreverorscscvsannsnsncnaannes T 0OCan60000 12-564
UL S e R S S S e G e 00000000 T Hde 0000000 000000000 00D 00a0000a 800000 12-65
LRSS G ek e d T A S a0 0 00 0BG ca 0 a0 00080004000 00000G000000a000a0neans 12-65
ThIFiNdPOUNAS. s s r s v erasnsnrsrarrcacnnonnreannarsanansnnnnns AGBO000a0 00 12-465
ThlGetSelectedCell1IDs. i esvensiasuiesascsssasssnssnnnrsannnnascvsas 12-46
ThlHighlightCell.....sreeeeiransvesasnarosncscsnsnnaarnans do0acanoaan 12-47
ThlHilightTable..ceevrernenrerrrnanans e e etriceasecaerrae e enen 12-67
ThlInitTable.iereecaernrsenranasncracassnercens Soooon NGo0an G0A00000000 12-68
N R s e D B a8 000000 0o aB 00088000600 0000000860000000008 80000600 e 12=70
LR G A4S e e da 00000006008 Ena0 8008006000 00800000000008005008 sranan . 12-7C
s e S 650606000 00a0a 0000000000600 080000G0000o00000000060000008a0000
ThbiMewScreen....... naGoooog 000G 00060000000060 0080000600 Caoanas vans 12=70
TbiScroll.....c..s. 000000000008 0600060000000080000000000000000000400 . 12-71
TblScrollAdijustlellID, . i vuriereearaasnseononassansosssnnannnaansss 12-72
ThlSetCurrentCell....... 50000000006000000005600000006006000900800000000 12-72
Ul =TSR e = A R S e 8 60 006000 B8 0 a0 o 0o 00 b0Ga0g000 8040006000 800800000680a0 12-732
ThlSetVisibleREBCt. . i cverianonnsscascassonsassssssassssssancsnanosssnssss

Ul e AR s = = e s a g 000 oo g ooaaaon a0 o0a 0o cuoanaoo oo oo oonaoao 0000000 12-73
1A b b e Lk AU E S B B G0 GO aa Do na8 0000000000000 0 0000 000800000008 aaa00 12-74
ThbllUpdateRect....vveissvacancnccunns 0O 0000DO00000 000000000 50000000 vee 12-78
TimeToString...... Ga000o00000000080060080060000000008080a00 taasesnenunas 12-73
TranslateHeading. s svcveuereeracasancsosasovsassosvsssassansasssasasaasnsas . 12-76
UnDoDataForm. ... s iie e s ccs it verassvsnascncsnsnsanea 000000000 000 AT
U e A oAb G o aa s 08000000 0008aaEaaE0Ea 0 aaaasnaaan oo 00000000000 12-78
L E Y o o0 00008000000 00008000d0000adbaaGEnaa0 0 00000000000 00000G00000000 12-
LHHNA a0 500000000000 000000000400050000000000000808000808000000050060¢6 A0 ai

APPENDIX A. INCLUDE FILES

ix

APPENDIX B. LISTINGS OF DATA DRIVEN MENU/FORM EXAMPLES

APPENDIX C., MENUS & FORMS: ANOTHER METHOD

Data StruCtUrES v e tvnetrantnteensasrnsasoseecoinsatonarosusenernvanes -1
Menu and Form ROULINES +uiveeetcatsosunsinentcrnesiosatoassreteensannns C-4
= T I C-S
e M e SN S e R oo ba B oo Es OB oo a oo a0 e B an s anadaaac 0o a0t b ooaa s a0 C-6
MenuFormConfirmediettouesoncaceneaioncenanananscaceneanannanans c-8
MNiIChOiCePrOC s e svevarsruoruonsnssasusnsusassasasaacsuassnssnasnnses c-13
NilEChDIiceInfO cvveieeernrsiiecaacnrannassanacsasenasoasssasnsasacannas C-13
1 8 =T = o o e« - PP PP £-13
R =T R e R R S S A G B 0 A O D OO DO GO e e o a0 o0 0 c a0 Do oa a0 e B oo oo s C-14
MenUFOrMDISPOSE v vurercnrerorarsosssarmscranasansnsanssssonnsnaansana C-14

®

—

ABOUT THIS BOOK

This reference manual describes the Common Code, a package of PASCAL functions
and procedures for formatting information and displaying it on the screen. It
also contains routines for manipulating character strings and bytes of memory.

This book relies upon the information contained in other Compass Computer
Manuals., The code in this manual conforms to the PASEAL language as it is
described in the PASCAL-86 User's BGuide, It assumes an operating system
environment as defined by the GRiD Dperating System (G6RiD-05) Reference
manual. The methods for linking and loading the routines are described in the
Program Development Guide.

If you plan to use the Common Code to write programs that conform to the
software requirements of GRiD Systems Corporation, be sure to see the GRiD
Mangement Tocls Reference mapual, It shows BRiD's prooramming conventions - in
practice,

The first two chapters of this manual introduce the Common Code and GRiD's
programming conventions for menpus, forms, and tables. Chapters 3 and 4
describe data structures used by Common Code routines and the characteristics
of data files used by GRiD applications. Chapters 3 to 11 provide a summary
of the procedures: related procedures are grouped together, allowing you to
obtain an overview of the routines available. Chapter {2 lists all of the
Common Code procedures in alphabetical order and provides a detailed
description of each procedure, Use this chapter as the standard reference
section once you are generally familiar with the routines that are available.

Appendix A lists the include files for the Cosmon Code routines, Appendix B
lists example programs for data driven forms and menus and appendix C
describes an alternate method for developing menus and forms.

Additional appendices providing more examples of the use of Common Code
routines will be available in several months. To obtain a new version of this
manual which includes up-to-date examples, send in the "Important Notice" at
the front of this manual,

CHAPTER 1) INTRODUCTION

This chapter introduces the Coemon Code package, and shows how the Commpon Code
routines relate to GRiD's user interface and application programs. The Common
fode comprises a number of subroutine packages, and this chapter explains
their relation to one another.

THE COMMON CODE: A COMMON USER INTERFACE

BRiD applications have heen designed for similarity in appearance and
operation. This resulted from a conscious decision by GRiD to produce
software that is easy to use and to learn to use. When applications have
similar or identical commands, the user has to learn the commands only once --
from then on, all new learning is based upon what the user is already familiar
with.

This approach is the basis of the BRiD user interface. The consistent
interface is the common feature that makes a data base as easy to use as a
text editor.

With this design in mind, it was logical for GRiD to put these coamon features
into a single software package -- the Commor Code. The Common Code provides
the data structures and procedures for maintaining a consistent user interface
among a variety of applications. It provides the mechanisms to implement the
"ring" around the applications.

Figure 1-1 shows the major packages of the Coamon Code. The character string
package and window graphics package form the basis upon which all else is
defined.

NOTE: The window graphics package was origirally part of the Common Code

but is now part of the GRiD Dperating System (6RiD-05). Refer to the
5RiD-05 Reference manual for a description of window graphic routines.

Introduction 1-1

Fields, tables, and menus/forms provide sophisticated mechanisms for
dicplaying and formatting text on the screen, The features of each package
are discussed below.

. —

Il ey
¢ Merus)
and
Forms
"‘_‘ -F-rr.'f
'._ —— _\‘. I ‘.'-’ﬁ\w\
‘f'f o mmand:s\. e I"!
l ard - ™ Strinas
MESSdQE<| COMHOH
\, CODE '

' —

/\,._H

Figure 1-1. Major Packages of the Common Code

STRING MANIPULATION

The string package consists of routines for processing text characters. The
routines offer greater flexibility than many comparable string packages.

It features:
g Strings up to 63333 characters long
o A full range of string functions and numerical conversions
o Literal strings

o Dynamic allocation/deallocation of strings to save memory space

i-2 Common Code Reference

O

@

MENUS AND FORMS

With these routines, you can send and receive data from the user by means of
menus and forms. The user can type input or choose a predefined item from a
list without unnecessary typing. :

The user can confirm only one item on a menu. With a form, the user can set
several items at once, either by choosing a setting or typing a new one.

xchange for another tile
Include a3 file
Write to a file
Appaend a file
Errase a file
Show characteristics of a file

Sampl2: Select 1tem and contirm.”

Sample Menu

Editable numeric field Q} 1
Choice only field irst choice
Editableschoice field A choice

Editable real number fiesld S5.5000

Tupeface System—-wide

Printer EpsonF¥1060

Plotter HP

samples F1ll in tarm and coptirm

Sample Foram

The menu and form package has these features:

o Movement and editing within the menu or form is controlled completely
by the Common Code

o Scrolling is enabled automatically for large menus and forms

o Menus and forms are alleocated dynamically
FIELD FORMATTING
The tield package lets you format text characters within a rectangular box
{called a field) and display it on the screen., Each rectangular field can be

formatted and displayed separately from any others.

Specifically, it includes routines to

Introduction 1-3

o Display a blinking, triangular text cursor (’H
=

o Facilitate cursor movement with arrow keys, BACKSPACE, and
CODE-BACKSPACE {erases previous word)

o Dutline and highlight individvual fields

o Left-align, right-align, or center text within a field

o Format multiple lines in a field, with word-wrapping

o Specify individual fields as user-editable or display-only

o Allecate fields dynamically

TABULAR FORMATTING

The table routines let you group several fields into a table and mapnipulate
them together. With these routines, numerical and character data are
formatted so that users can examine and edit them easily.

The table code has these features:

o All field formatting functions are available for every data cell in
the table

o A text cursor and cell outline can be moved from cell to cell to show (:::
the field being edited

o Text and cells can be duplicated, erased, moved, and inserted with
built-in functiaens

o The user can select portions of the table as operands for commands
0 Selections are highlighted automatically
o Automatic screolling is available

o Tables are allocated dynamically

HIERARCHY OF THE CDMMON £O0DE

The Common Code packages are designed to build upon one another. Figure {-2
shows the hierarchy of these packages.

1-4 Common Code Reference

@

O

Meszages Pronpts

Tables

Fields

Strimas
MW ndonGraphics |
CLELO-0S

"]

Figure 1-2, Hierarchy of the Common Code

Each outer leve! depends upon the data structures and procedures of an inner
level. They have been left separate so that you can program at the level of
detail and sophistication required by each application. The Common Code can
do as little as displaying a single bit on the screen, or as much as
managing, displaying, and updating several data structures in resl time. When
reading this manual, keep this structure in mind. The sequence in which the
routines are presented in the following chapters do not, however, strictly
follow this hierarchical approach. Instead, we present the basic structures
and routines that you need to implement commands, messages, prompts, aenus,
and forms. Thiz lets vou begin using the most widely used capabilities
provided by Common Code without becoming totally familiar with same of the
underlying structures. We discuss fields and tables last because, althaugh
they profide the underlying structure for menus and forms, you usually nreed
not use them directly unless you are working on a cell-based application such
as a spreadsheet.

Tmtrndurtinm =5

CHAPTER 21 THE USER INTERFACE

This chapter describes the major features of the user interface for GRiD
software products. It provides the necessary background for using the Comaon
Code to construct user interfaces that are compatible with BRiD software
products. The terminology introduced in this chapter is used throughout the
manual.

Many of the capabilities provided by the Common Code can be utilized without
understanding some of the underlying or auxiliary capabilities. For exanmple,
you can easily implement menus and forms just like those used in GRiD
applications without delving into the complexities of cells and fields. For
this reason, the chapters in this book present a few basic routines, such as
string handling routines, that are needed to use menus and forms, but save
explanations of cells and fields until the later chapters. This approach
should let you begin using some of the powerful features of the Common Code
immediately. When you feel comfortable with these capabilities, such as
messages, commands, menus, and forms, you can begin exploring the more cosplex
functions and procedures provided by the Common Code.

THE OPERATING ENVIRONMENT

The Common Code is designed to operate specifically with the GRiD Operating
System (GRiD-0S), a multiprocessing systes.

o It is designed to be reentrant so that several concurrent processes
can use it at once.

o Different processes are assigned different areas, or windows, on the
screen to operate. Fach window represents a separate process. The
Common Code controls the display within each window. Hence, all data
and graphics are displayed relative to a window, and never defined
upon the absolute size of the screen.

The User Interface 2-1

o All data structures are allocated and deallocated dynamically to save
memory space for other applications to run. This is the rationale
behind the extensive use of pointers in the field, table, and <jﬁ
menu/form packages. e

CODE COMMANDS

The user causes the computer to perform an action by pressing a CODE key
command, such as CODE-D for Duplicate.

The CODE key is a modifier key, like CTRL or SHIFT. The CODE command
characters are not displayed on the screen; they are carried out directly.
BRiD chose the CODE key for commands so that CTRL and SHIFT would be left free
for coammands to existing terminal emulators and timesharing systess.

Figure 2-1 shows the syntax of a typical command.

Hove tol] JPress CODE “RETURN Lovemrinnss
cell || connand P CODE-RETURN b~

Henu appears:
Hove to iten

Forn appears: A
Fill in Forn

Select tent q
N or cells P

Figure 2-1. Syntax of a Typical Command

The user moves the cursor and outline to the text or cell to be acted on by
the command. After pressing the CODE key coemand, the user faces one of these
options, depending on the command:

o To move to an item on a menu.
o To fill in a form.
o To select additional text or cells by pressing arrow keys.

These three options are described later. The user then presses CODE-RETURN teo
confirm the menu item, form, or selection. If the command requires additional
parameters, it will display additional menus, forms, or messages requesting a

selection.

2-2 Common Code Reference

NESGSAGES

Messages and prompts to the user are displayed in lines at the bottom of the
screen. The messages or prompts are highlighted within a display-only field
that the user cannot move to. They are centered within the fieild,

Messages should be programmed to disappear upon the next keystroke. Command
proapts should remain displayed until the user confirms or cancels the
command. Messages and prompts have this appearance:

{Command name>; <{Prompt>
Duplicate: Make a selection.and confirm
Properties: Fill in form and confirm

Transfer: Select item and confirm

THE FLOW OF CONTROL

GRiD applications are designed to be "modeless", That is, the user does not
have to press special keys to enter Edit Mode, Command Mode, Retrieve Mode,
etc. In any GRiD application, the user simply types text (without having to
enter an Edit Mode) or presses a command key.

The user can always terminate a command at any poirt. At each step in a
command, whether confirming a menu item, filling in a form, or making a
selection, the user can press ESC and the command is aborted. The user can
then type text or issue any command.

Pressing a command key during another command preeapts the pending cosmand and
starts a new one. By pressing one command key, the user can stop any command
and begin any other one.

CONMON COMMANDS

The real advantage of the leveraged learning interface is that the commands in
different applications have similar names and syntax. Table 2-1 below shows
these similar commands, Many of these are available as functions in the
Compon Code.

The User Interface 2=3

KEY COMMAND GRiDPlot GRiDFile GRiDWrite GRiDPlan GRiDManager (rﬁ

CDDE-A ACCESS X X X X X o

CODE-B BEGIN X X X X

C0pE-C COLUNN X 4 X

CODE-D DUPLICATE X X X H X

€EODE-E ERASE X X X X X

CODE-F FIND X X

CBDE-H HEADINGS X X

CODE-] INSERT X X

CoDE-J JUMP X X

CODE-M MOVE X X X X X

CODE-O OPTICGNS X X 1 X X

CODE-P PROPERTIES X X X

CODE-D BUIT X X X X

CODE-R ROK X X X

CODE-5 SUBSTITUTE X X

CODE-T TRANSFER X X X

CODE-U USAGE X X X X

CODE-W WILDCARD X X

COGDE-ESC CANCEL X X X X X

CODE-RETURN CONFIRM X ¥ X X X

CODE-? HELP X X X X X
Table 2-1. Common Commands

The arrow keys are standard across applications too. See Appendix I for a <::

discussion of the keys and the Common Code procedures to control thes.

2-4 Common Eode Reference

MENUS AND FORMS
: } Eommands can request data from the user by presenting a menu or a form. With
5 a menu, the user selects a single value as input to the Compass. Forms allow
the user to give the computer several values at once.

Menus

See Figure 2-2 for a sample GRiD menu. All GRiD menus resemble this one.

rr foaug this File | P
» kErchange For asncther Flle Uy

t Include a file

I Write to a File

= Append to a File

* Erase a File

[Shou characteristice of a File
> Fornat

—t Print

e e e

Tiranzfer . Select iten and confirn

!

flerv I1tens Hessage Line Outline

Figure 2-2. A Sample GRiD Menu

D A menu consists of:

Menu items A vertical list of objects or operations, such as commands, file
titles, or storage media. By confirming an item, the user
tells the Compass to operate with that item instead of the
others. The items are display-only fields that the user cannot
modify.

Butline A moving indicator that rests upon the current item. A
triangular cursar never appears within this outline, because
text cen never be typed into a menu.

Message Line An informational message instructing the user as to what action
to take with the menu.

The User Interface 2-3

Example

Within a word processing program, the user presses CODE-T to transfer a file
toe a storage medium. The menu shown below appears:

{Have this File]
wchange For another File
Include a File

Hrite to a File

Append 1o a File

Erase a File

Shouw characteristics of a File
Fornmat

Print

The user presses RETURN three times to move the outline to the item titled
Write to a file. Users can move the outline as much as they like before
confirming an iten.

Save this file

Exchange for another File
Include s File
rite to 3 +1le |

ppend to a File

Erase a File

Show characteristics of a File -
Fornat

Print

The user presses CODE-RETURN. The word praocessing program finds out which
item was confirmed and performes the operation. Only one item can be confirmed
at a time.

1f the user presses ESC or another comeand key, the aenu disappears and no
operation is perforaed,

Foras

See Figure 2-3 for a representative GRiD form. Most GRiD foras reseable this
one. Forms are different from aenus, for these reasons:

o Most forms let users change the settings of several items. Menus let thems
confirm anly one itea.

o Users can type their own settings. Many foras do not liait them to
predefined choices .

o When users press CODE-RETURN, they confirm the settings of all the form
items, not just the outlined setting.

2-4 Common Code Reference

{ " Highlighted Box thaice Band

i
Choices i

H r-

: i

I_ Center Right *

Standard column uidth &

Standard alignnant Lert i
Standard Format niteqer -
Current Typeface Systen-uide

Forn Itens Settings Outline

Figure 2-3. A Sample GRiD Form

A form consists of:

Fora items Labels which identify the data to be modified. Each iten
has a setting associated with it. These are display-only
fields that the user tannot move into.

Settings The actual values that the user types or chooses from the
choice band. Application programs read these values and
operate on them. These are editable, choice, or
editable-choice fields, depending on the application.

Dutline A moving indicator that surrounds the setting currently
being modified. RETURN moves it down and SHIFT-UpArrow
maves it up.

If the outlined setting contains a blinking CUrsor, users
can type their own value for that setting.

Choice band Located at the top of the form, it contains the choices
associated with an item. #As the user moves from itea to
item, the choices in the choice band change. The choices
appear either horizontally or vertically. (Forms without
choices do not have a choice band.}

Choices Predetined values for a setting, which appear in the
choice band. The highlighted choice appears within the
outline automatically., It is the value for the outlined
setting. The choices are display-only fields.

Highlighted box Indicates the choice that appears in the outlined setting.

The User Interface 2=7

o o

e ——— e T

Pressing the arrow keys moves it among choices. c:j

Exanmple

In a tabular worksheet program, 2 user presses CODE-D to adjust the
worksheet ‘s options. This form appears, with these initial values:

Left Center

Standard alignment fRight |
Stapdard Format Tnteger

Standard colunn uidth 8

Shou grid? Yeas

Evaluation ordet By rous

Precision 15-digit Real

Current tupefFace Systen-uide

Cpticns: Fill in Earn &nd confirn

The outline surrounds the setting associated with the Standard Alignment itenm.
This setting is a choice field. In the choice pand, the highlighted box rests
upon Right. Right also appears within the outline.

)

2-8 Cosamon Code Reference

@

The user presses LeftArrow once, and the highlighted box moves to Center. The
outlined setting now contains Center as well; the Commaon Code does this
automatically.

LeFt Righi

Standard aliagnnent ICenter |
Standard Fornat Integer

Standard colunn widih &

Show arid? Yes

Evaluation order By rous

Precizion 15-digit Real

Current typeface Susten-uide

The user presses RETURN to move the outline to another setting., WNew choices
appear in the choice band. The user presses Left@Arrow twice, and the
highlighted box moves to Decimal Places. The setting is an editable-choice
field, so a blinking cursor appears in the ocutline. The user types a number,

L ESNSETC N Integer § Scientific
Standard alignment Lenter
Standard Format F §
Standard colunn width 8
Show arid? Yes
Evaluation order By rous
Pracision 15-digit Real
Lurrent typefFace Susten-uwide

dptions: Fill in Form and conFirm

The user presses RETURN again. The choice band is now empty, but the blinking
cursor appears within the outline. The setting is an editable field. The
user presses BACKSPACE to erase the initial value, and types another value.

NDTE: Wherever the blinking cursor appears, the Common Code lets the user

modify text using arrow keys, BACKSPACE, and CODE-BACKSPACE (erase previous
word).

The User Interface 2-9

C
Standard alignnent Center
Standard Fornat 7
Standard colunn uidth 1< {
Shou grid?- es
Evaluation order By rous
Precision 16-digit Real
Current tupeface Susten-uide

Opticns: Fill in Form and conFirn

Pressing CODE-RETURN now returns the curser and outline to their previous
context, the worksheet program. The worksheet program could then retrieve the
new settings of the form and operate upon them. The form disappears.

1§ the form had appeared in the course of a command, the command would
cantinue.

Pressing ESC or another CODE command would return the outline to the worksheet
program {canceling any pending command), wut the form would retain all its old
settings.

FORMATTING INFORMATECN

An essential functinn of the Common Code is to format information for display
on the screen within an application window. It provides a sophisticated
mechanism for putting raw text and data into formatted fields.

Fields

To the user, a field is a rectangular area on the screen that contains text or
numeric values, It can be filled in by the user or the systenm,

To the programmer, a field is a data structure that contains a text string and
formatting information for that text. The Common Code provides procedures for
formatting the text and displaying the text on the screen.

The contents of a field can be left-aligned, right-aligned, or centered.
Fields can contain more than one line of text. There are four types of
fields, designed to protect data or enable the user to interact with it.

Editable Editable fields allow the user to edit their values by
typing, backspacing, or pressing arrow keys to move within
the field.

Display-Only The user cannot alter the values of these fields.

Choice Choice fields can contain only settings from a predefined

list. They are used only within forms, as described later.

Editable-Choice Editable-choice fields can contain settings chosen from a (::

2-10 Common Code Reference

predefined list, or the user can edit their values by typing,
backspacing, or pressing arrow keys. They occur only in
forms, as described later.

Tables

Tables are collections of fields gathered together as a matrix. They are
convenient for displaying large amounts of numerical data or for putting text
into a tabular format.

Tables consist of editable fields, though the fields could be modified to
become display-only in erder to protect the field contents, Each field in a
table is called a cell.

Tables are easier to use than individual fields. The Common Code has defined
procedures for moving from cell to cell, and for controlling the cell that is

to be edited. Automatic scrolling has been developed for tables, and several

cell functions have heen defined to operate upon selections of cells.

EDITING INFORMATION

The Common Code provides several mechanisms for editing information within a
field: cursor control, code commands, menus and forms, text and cell
selections, and screen messages.

Cursor Control

For editing within fields, the Common Code provides routines to generate a
blinking triangular cursor, which is placed between character positions in a
field.

For applications with more than one field on the display, the Coamon Code has
routines to outline the field currently being edited. The table package has
routines for moving both the cursor ard the cell outline, and for keeping
track of the "current cell”,

The user moves the cursor and cell ocutline by pressing arrow keys. Appendix G
lists these arrow keys along with the Common Code routines that control their
operation.

The table package alse has built-in functions for scrolling. If a user tries
to move the cursor and cell outline outside of a scrolling boundary, the
contents of the display will scroll. Tables can be constructed to display and
scroll over large databases.

The User Interface 2-11

Selection of Texat or Cells C

Many commands require the wser to select text or cells as operands. For
example, the user selects some text within a cell to be erased, or a range of
celis to be duplicated.

As the user presses arrow keys, CODE-B, CODE-C, or CODE-R, the selection is
highlighted by the Common Code, The user can change the selectiaon as much as
desired before pressing CODE-RETURN to confirm the selected text or cells.

The selection area is always a rectangle no matter how the user moves the
outline or cursor., The first selected cell and the current cell (i.e., with
the outline) form two corners of this rectangle., The first selected cell is
known as the "anchor,” because the selection appears to be anchored to it.

CODE-P allows the user to restart the seiection. When the selection is
restarted, the original anchor is discarded and the outlined cell becomes the
new anchor.

O

2-12 Common Code Reference

@

CHAPTER 3: DATA TYPES

This chapter defines the basic data types used in this manual. Every package,
such as the table routines, has other data types that are defined specifically
for it. The unique data types are defined in the same chapter where their
corresponding routines are described.

SETANDARD DATA TYPES

Table 3-1 lists the basic data types found in the Common Code.

Data Types 3-1

Type

Boolean

Integer

LongInt

Word

Byte

Char

Real

LongReal

Description

An ordinal type with twp values, <::
False (0) and True (1),

A simple ordinal type of two bytes
in the range -3274B to 32767,

A simple ordinal type of four bytes
in the range of -2,147,483,4647 to
2,147 ,483,646.

A simple ordinal type of two bytes
in the range of ¢ to 465335,

An enumerated ordinal of the range
0..285. Not to be confused with the
Bytes type, described below.

A simple ordinal defined on the ASCII
character set.

A simple type defining single-precision
flpating point numbers with 24 bits of
precision.

A simple type defining floating-point it
numbers with 53 bits of precision. (:

Table 3-1. OStandard Data Types

3-2 Common Code Reference

THE BYTEE TYPE

A special data type has been defined to override PASCAL's rigorous
type-checking. It is the Bytes type. MNote that it is NOT the Byte (singular)
type, which 15 defined to be 0..235, The Bytes type is not a part of standard
PASCAL, The PASCAL-Bé User's Guide describes it in more detail.

The Bytes type allows you to pass any type of data to a function or procedure.
The passed data must match what the procedure expects to receive, of course.

The Bytes type is used to implement literals, such as literal character
strings. For example,

NewStringlLit (VAR 1it: Rytes): StringPtr;
accepts these literal inputs:

VAR stringArray: ARRAY [1..80] OF Char;
aString: StringPtr; {(see Chapter 4)

b4

:= NewStringlit(' 'abcdef');
®» = NewStringbiti(stringArray);
:= NewStrinplLit(abtring”.chars[i]};

When passing a parameter of type Bytes, the procedure actually passes a
pointer to the code itself. Hence, all Bytes parameters must be passed by
reference rather than by name. The Bytes identifier can appear only in an
external module’s PUBLIC section: see the PASCAL manual for more details.

COMMON CODE DATA TYPES

This is a summary of the data types in the Coamon Code. The data types for
each package are defined at the beginning of the appropriate chapter.

Common Properties

AuthorType

HeadingType
ForaFeedType
ColumnType

TypeSize
PrintOptionsRecord
CommonPropertiesRecord
General Record
GeneralRecordPointer

Data Types 3-3

Data Driven Fornms

SomeArrayDfBytes {i]
PointerToSomeBytes

DatakindType
DataFormModeType
DataKindAliasType
DataRowType
DataFormType
DataMenuType

Fields

filignment
Fieldkind
FieldDescriptor
FieldPtr
FieldEditResult
SetType
CursorDescriptor

File Forns

FFModeType
FFExchangeMode
FFExchangeResult
FFSaveResult
Defaultiype

Menus and Forms(Not Data Driven)
MenuFormDescriptor
HenuForaPtr
ChoiceRequest
UpdateKind

Messages and Prompts

MessageStatus
MessagePtr

Strings
Literal

StringDescriptor
StringPtr

3-4 Conmon Code Reference

)

Tables

ColfArray

ColPtr

Screenfirray
ScreenPtr

Cellld
SelectionRangeKind
TableSelection
CellTable
TextCursor
CellTablePtr

Data Types

3-5

-

CHAPTER 41 COMMON PROPERTIES AND OPTIONS

Much of the power of the GRiD Management Tools application programs derives
from the ability of all the appiications to operate on the same set of data
files. Thus, a database file created in GRiDFile can be taken into the
GRiDWrite application for use in a text file or taken into GRiDPiot to obtain
a8 graphic display of data. The files can be freely exchanged between
applications without reformatting the data.

This flexibility and power are achieved by ensuring that the data in all files
is in a well-defined format regardless of which application created or most
recently changed the file. The schemer used also allows applications to
include additional (non-data) information in files to describe special
attributes, or properties, of the file.

INTERCHANBE FILES

Files that conform to the format used by GRiD applicatior programs are called
"interchange files". These files can contain three different kinds of
records; data records, common properties records, and application properties
recards, Data records contain the actual text and numerical values
comprising the "meat” of the file. Common properties records describe such
things as how data in the file is to displayed or printed by all applications
programs. Application properties records have special meaning only within a
particular application. There are three rules that must be observed with
records in interchange files:

i. Data records can contain only printable characters, carriage return
characters, line feed characters, and tab characters,

2. Properties records (both common and application) must begin with a
non-printable character (FF, FE, and FD hexadecimal are currently
assigned special significance).

3. Common properties records (if any) must be the first records in an
interchange file. ({Application properties and data records can occur

Common Properties and Options 4-1

in any order after the common properties records.)

DATA RECORDS <::

Interchange file data records are stored in a tabular format:

eeach record consists of a line of printable characters (text or numbers)
terminated by a carriage-return line-feed pair and corresponds to one row of
data in a table. Tab characters can also be intermixed with the printable
characters in a record. In cell-based data files, such as worksheets,
database, and graph files, a Tab character is used separate adjacent cells
within a row.

Thus, the data records in a file .consist only of printable characters,
carriage return characters (0D hex), line feed characters (0A hex), and tab
characters (09 hex). The following illustration shows the organization of a
data record:

lipe Feed

carriage return —j |

+4 141 |54 {41 |20 | 52{45| 43|05 | 3Z2|{33]00|0R

p A T a T r ¢ T 2 2
space tab

(::

Figure 4-1, Interchange File Data Record Format

This illustration shows the contents of the record in hexadecimal
representation and the ASCII equivalent of the record’'s contents below the
figure. Each byte in the record contains a printable ASCII character or the
tab character, and the carriage-return line-feed pair mark the end of the data
record.

PROPERTIEE AND OPTIONS

In arder to tightly integrate GRiD applications, some attributes which define
the display and printing of data files are stored within the files. These
attributes ensure that a visual appearance of a file when it is displayed or
printed will be the same regardliess of which application is currently
operating on the file,

These attributes can be set in various ways within an application. The
Options (CODE-D) command is used to set display attributes that apply
throughout an entire file, and the Properties (CODE-P) command is used tp set
attributes that apply only to a column, row, or range of cells. Attributes
that apply when a file is being printed are set via an item ("Set Print
Options") selected from the Print menu of the Transfer command.

@

; 4-2 Common Code Reference

-"I
-

COMMON PROPERTIES RECORDS

When an application reads in a data file, it can examine the first byte of the
file to determine whether the file contains any common properties records.

(If there are any common properties records, they must be the first records in
the file, preceding any data records and application properties records.}) If
the tirst record is a common properties record, the first byte read will
contain the “"common properties flag" byte of FE (hexadecimal),

The format of common properties records can be illustrated as follows:

Connon Propertiss —— Tupe ofF property
Flag Byte being defined in record

-

FE | lenath |cprID| properties

T.

f word indicating nunber of butes
CFollowing "length") in the record.

Figqure 4-2. Coemon Properties Record Format

The two bytes (word) feollowing the common properties flag byte (FE hex) define
the number of bytes in the record (excluding the flag byte and the 2-byte
length indicater). The common properties record identifier (cprlID) byte
(after the length word) defines which of the common properties this record
describes., The cpriD bytes currently defined are as follows:

cpril Byte Property

Hex ASCII

b4 a Author (application) of this file
&3 c Column field properties
64 d Standard field properties
1.} f Cell field properties

48 h Text header properties

4C 1 Raw height properties

4D [Print option properties
&E n Font properties

72 r Row field properties

74 t Table size properties

77 W Column width properties

The cprID byte tells you which of the common properties recognized by GRiD
applications is described in a record. [If there are any common properties
records in an interchange file, the first record of the file must contain the
"auther af this file" record.

Common Properties and Optiocns §-3

e —

The properties listed above can be grouped into three categories:

f. The Author ID property
2. Font properties and Print Options

o Font properties

o Print options

8 Text header properties
3. Field Characteristics

o Standard field properties
Column field and width properties
Row field and height properties
Cell field properties
Table size properties

o0 0o

AUTHOR RECORD

This record MUST appear first in an interchange file if the file contains ANY
common properties records. It tells you which application first wrote this
file. The format for the Author record is as fellows:

Connon Properties — cpt'ID
Flag EBute authorID = £1 haw, ASCIT “a"
H - T Data
FE 04 100 | 51 i 4 File
! =% Uergion
T_ Product
Length = ¢ Code

Figure 4-3. Author Record Format

As shown in this illustration, this record has four bytes following the length
word. NOTE: MWords are always stored with the low-order byte first. Thus, in
the length word shown above, a length of four appears as 0400 (hex}. The
first byte after the length word indicates that the record is an authorlD
record, the next two bytes contain a product cede identifying the application
that created the data file, and the last byte is the data version (or
compatibility level) of the data file. The product codes currently defined
for GRiD applications are as follows:

4-4 Common Code Reference

Application Product Code
Decimal Hex

GRiDFile 21108 524D
GRiDFlan 21111 5277
GRiDPlot 21121 5281
GRiDWrite 21131 528E
GRiDTerm 21141 5293
GRiD3101 21151 929F
GRiDVTIOO 21191 52C7

The data version byte at the end of the authorlID record defines the
compatibility level of the data file. For example, database files created by
2.0 and 1.0 versions of GRiDFile would have this byte set to ¢1 (hex) while
files created by the 3.0 version of GRiDFile have this byte set to 02. This
indicates that database files created with older versions of GRiDFile are
incompatible with 3,0 GRiDFile.

FONT PROPERTIES AND PRINT OPTIONS RECORDS

These three records define the font to use when displaying a data file, the
options to use when printing a data file, and the text header (if any) to use
when printing.

Fant Record

GRiD application programs let the user select from a number of available fonts
{or typefaces}) to obtain the screen display of data most suitable for their
needs or personal preference. (See Chapter 11 for a discussion of fonts.)

The cosmon properties Font record defines which font is toc be used when
displaying a data file. The format of the record is as follows:

Conncre Properties — cprlD
Flag Byte fontID = EE hax, RSCII "n"

-+

FE | 1ensth 6E currentFantHane

F'S
runber of
butes Follouwing

"length"

Figure 4-4. Font Record Format
The text string that is the name (title) of the current font follows the

fontID byte. This is just the font name, for example "System-Wide" or "GRiD
54", not the pathname of the file.

Common Properties and Options 4-3

Print Options Recerd

The Print Options record defines the way in which a file will be printed. The (::
information in this record is originally obtained from a Print Options form

which GRiD applications can display after a user has selected "Print" from the
Transfer menu. The items on the Print Options form correspond to the entries

in the Print Options record whose format is as follows:

Comnan Properties
Flaa Bute cpril
I prrintOptionsID = 60 hex, ASCII "n"

FE | OB | OG FFiChjTh Cs| Rh|Ls

rY T. e 4 4r
Length 11 J
LeFi
Harains ?;:ht

Botton

Forn Feeds
Colunn Headinas
Tent Headings

Colunn Spacing
Row Headings
Letter Size

Figure 4-5. Print Options Record Format (’ :

The left and right margin bytes indicate the character positions where the
first and last characters on each line are to be printed, The top and bottoam
margin bytes specify the first and last character lines on a page where data
is to be printed., (The first possible line number is 1, and the first
possible character position is 1.)

The Form Feeds byte specifies when form feeds are to be sent to the printer as
follows:

no fore feeds

form feeds before printing begins
form feeds after printing is finished
form feeds before and after printing

e LAl B ==

The column headings byte and the text headings byte specify when the coluan
and text headings from a data file are to be printed as follows:

print no headings

print headings on first page only

print headings on every page except first page
print headings on every page

- L D =
"N uwn

The contents of the column headings are generated within each application as

C

4~4 Common Code Reference

—

e

appropriate and would be indicated in the data file by "private®, or
application-dependent, properties records (discussed later in this chapter).
The Text Heading data is defined in the common properties record described in
the next paragraph.

Text Heading Record

Text headings are independent of the application and they simply consist of a
text string that can be printed {as specified by the column headings byte)
centered at the top of pages. The format for the Text Heading properties
record is as follows:

Connon Properties — cpriD
Flag Bute textHeadingIlD = €8 hex, ASCIT "h"
FE | lenath bE -+ text of ihe heading -
5 e
runber of
butes followins
"length”

Figure 4-4. Text Heading Record Format

FIELD CHARACTERESTICS RECORDS

These commen properties records define the alignment and format of data
displayed in columns, rows and cells, the width of columns, the height of
rows, and the size of a table.

A single cell can have its properties defined in one of four ways:

o By a cell field properties record (one or more cells selected after
CODE-P)

o By & ctolumn field properties record {(an entire column is selected
(CODE-C after CODE-P)

o By a row field properties record (an entire row is selected (CODE-R
after CODE-F)

o By a standard field properties record (the Options command -- COBE-0)

Notice that a cell does not have to have its properties explicitly defined.
Initially, a data file has all of its field (cell) characteristics defined by
the standard field properties record; no additional field properties records
are required until a user sets properties in an file (using the CODDE-P
command}. At that point, you must create a properties record for the fields
that were changed to be different than the standard settings. Depending on
what fields the user selected, a cell, column, or row properties record will

Common Properties and Options 4-7

be regquired.

The approach used in defining properties minimizes the total number of field (:ﬁ
properties recaerds that are required to fully describe the characteristics of 4
a2 data file and thus keeps the file as small as possible. Obviously, it would

be inefficient to define cell properties individually if all of the cells in a

row or column have the same properties, Similarly, there is no need to define

the properties of a column or row if they are they same as the standard

properties,

To determine the properties of a cell, GRiD applications first look to see if
the properties are defined in a cell field properties record. If not, then
the column, row, and standard field records (in that order) are examined. The
first of these records that tontain a definition for the cell in guestion is
the one that takes precedence.

Whenever a user sets properties for cells, columns, or rows, the application
may have to alter previously set properties if they differ from the new ones.
Therefore, existing properties records may have to be deleted or changed and
new ones created. Since the search sequence defined for determining cell
properties looks first to the cell, then the column, and thirdly to row, an
application must examine field property records in that order to check for
possible conflicts between new properties settings and previous ones.

For example, if you are changing the properties of a row, you would follow
these steps:

{. Check for a cell properties record for the row being defined. Gince <::
cell properties records are defined on a per-row basis, and since the
entire row is being defined, a cell properties reccrd for this row can
be discarded.

2. Check for existing column properties records. If one or more column
properties records conflict with the new row properties, then cell
properties records must be defined for the intersections of the row
and any conflicting columns.

3. Check existing row properties, If a field record already exists for
this row, update it accordingly. I[f does not exist, create a new row
field properties record.

NOTE: A special value of 255 decimal (FF hex) can be used in cell, column, and
row field properties records to indicate that the "default" properties should
be used. Default, in this context, means "do not use this properties byte;
instead, look to the next level of field properties records for the
properties."” Thus, if you encountered the default byte (255} in 2 cell field
properties record, you would then look to the column field record faor
properties,

4-8 Common Code Reference

Standard Field Record

The Standard Field properties record defines the standard settings for column
width, format (decimal, integer, etc.,), and alignment (left, center, right}.
These settings are defined by the user in BRiD applications with the Options
(CODE-Q) command. The format for the Standard Field properties record is as
follows:

Connon Properties — cprID
Flag Bute standardFieldID = €4 hax, ASCII “d"

FE) # | col Fra application
length | €4 | bop | uih Field props

run‘;' Foof T_ * format-alignmnt
e Folil column width

bules Follouing

" langth" nunber of butes

par property

Figure 4-7, Standard Field Record Foramat

The byte following the standardFieldID, indicates the number of bytes that
will be used to define each field property. Currently, most GRiD-developed
applications use only a single byte to define the field properties of format
and alignment., The bytes/property indicator, however, provides for using
multiple bytes in the future to allow larger values or define additional field
properties.,

NOTE: The bytes/properties value specified here applies not just for the
standard field record, but also to the row field, columen field, and ceill
field property records which will be described later in this chapter.

The next byte defines the standard width for columns in cell-based
applications. (BRiD-developed applications currently use a standard width of
8 characters for coluamns.)

The format/alignment byte defines the standard arithmetic format (decimal,
integer, etc) that will be used and the standard alignment (left, centered,
right) that will be used for displaying data in celis. (GRiD-developed
applications currently use a standard format of integer and a standard
alignment of right-justified.) The D most-significant bits of this byte
specify the format and the three least-significant bits specify the alignment,
The contents and interpretation of this byte can be illustrated as follows:

Common Properties and Options 4-9

I 1 L L
¥

t t } } i
arithmetic Fornat (0 - 313 alignnent <0 -

Bit # 9 2 b 5 4 3 2 1 0 C

“ FIEN /7
. t e
]
s &
e 0 0 e e ,___ _______
Decinal Fornat SpeciFied Becinal Alisnment Specified
1] Irteger a LefFt alignad
1-1k # of decinal places 1 Center aligned
30 Scientific notation 2 Right aligned

Figure 4-8B. Format/Aignment Byte of Field Records

Column width and format/alignment are the only standard properties currently
defined across all cell-based GRiD applications. However, each application
can append additional standard properties bytes following the format/alignment
byte. Thus, each application can establish any application-specific standard
properties {(Options) it might need. For example, BRiDPlan has options defining
such things as evaluation order (row versus column}, and whether or not to
display a grid as a background for the worksheet.

Column Field Record é::

The Column Field properties record defines the settings for arithmetic format
{decimal, integer, etc.), and alignment (left, center, right), This record
overrides the settings of the Standard Field properties record and would be
created as & result of the user setting column properties using the CODE-P
command, The format for the Column Field property record is as follows:

Connon Properties cpril
Flag Byte colunnFieldID = £3 hay, ASCII “c"
— 1st non-standard colunn #
; T

1 1T - 1 T —&s¥==== e E——
FE | length | 63 | # |one byte per column
s —— —
nunbar of Format and alignnment
bytes Ffollowing Por each colunn Fron 1st &
"lenath" thrrough last non-standard column

Figure 4-9, Celumn Field Record Format
The colFieldPropsID byte (43 hex) follows the commpn property flag and the

length word. The next word indicates the first column in the file that is of a
non-standard format or alignment. (NOTE: although a 1é-bit word is provided

4-10 Common Code Reference

to define the column number, no GRiD-developed applications currently allow
more than 255 columns.) The subsequent bytes define the format and alignament
of each of the succeeding columns. You must define the column format and
alignment {(even if they happen to be standard) of all columns until the last
non-standard column has been defined. For example, if coluens 2, 5, 7, and 7
{in a table that is {5 columns wide) are non-standard, the ColumnFleld record
must define the format/alignment of columns 2 through 9. Columns 1 and 10 -
i5 will assume the standard format/alignment, but you must explicity define
the standard format/alignment for columns 3, 4, and B in the Column Field
record. You can specify standard format for a column in this record with a
value of 31 (decimal) and standard alignment for a column in this record with
a value of 4 (decimal). The following illustration shows the organization and
interpretation of the format/alignment bytes in the Column Field record.

Bit # 9 7 B c 4 3 2 1 0
} i i (i }
arithpnetic Format (0 - 312 alignnent €0 - 72
N\ VRN /
hd A
|
s I
Decinal Fornat SpeciFied Decinal Alignnent Specified
7] Integer 0 LafFt aligned
1-1% # oF decinal places i Center aligned
30 Scient iFic notation 2 Right aligned
A Use Standard Fornat 6 Standard alignnent
_T_J _T_)
v

——
285 = Tgnore thic byte. Use deFaylt
record For fFormat & alignment.

Figure 4-10, Column Field Record Format/Alignment Byte

This is the same as was shown earlier for the Standard Field properties record
with the addition of the "Standard” and "Default” definitions., (Those
gefinitions obviously had no meaning with the Standard Field properties record
since that record itself defines the "standard" and it is also the last place
you iook for "default” definitions.)

Row Field Record

The Row Field properties record defines the settings for arithmetic format
(decimal, integer, etc.}, and alignment (left, center, right). This record
overrides the settings of the Standard Field properties record and would be
created as a result of the user setting row properties using the CODE-P
command. The format for the Row Field property record is as follows:

Common Properties and Options 4-11

Comnon Properties — cprif

Flag Byte reufFieldiD = 72 hen, ASCIT "¢" -
— 15t non-standard rou # e
LI -~ 1 I
FE | length |72 # one tute per rou
i e e e e e = |
> kN ~ r
nunber of Format and aliannent
butes Follouwing For each row Fron 1st row #
*lenath" thioush last non-standard rou

Figure 4-11, Row Field Record Format

As you can see, this record is nearly identical to the Column Field record
described earlier. The only difference is the cprill byte value.

Column Width Record

The standard column width for cell-based applications is specified by the
Standard Field Record (described earlier). 1If one or more columns in a data
file are set {via the Properties command in an application) to be different
than the standard width, you must write a ColumnWidth record into the data
file to define the non-standard columns. The format for the Column Width
common property record is as follows:

Connon Properties — CprID @
Flag Byte colunnlidthID = 77 hex, #SCII "u"
. — ist non-standard colunn #
v * T ~*"===" -_—]
FE | lenpgth 7? # |one bute per colunn
I S SO 0000 RN SN
4+ N > /
nunbet of Column width €in charactersy
butes Following Por esch colunn fron 1=t #
" length" up to the nagt standard column

Figure 4-12, Column Width Record Format

The colWidthID byte (77 hex) follows the familiar common property flag byte
and the length word. The next word indicates the first column in the file
that is of a non-standard width., (NDTE: although a 16-bit word is provided to
define the column number, no GRiD-developed applications currently allow more
than 255 columns.) The subsequent bytes define the width (in characters) of
each of the succeeding columns., You must define the column widths (even if
they happen to be standard width) of all columns until the last non-standard
column has been defined. For example, if columns 2, 5, 7, and 9 {in a table
that is 15 columns wide) are-non-standard, the ColumnWidth record must define
the widths of coluans 2 through 9. Columns 1| and 10 - 15 will assume the

4-12 Common Code Reference

standard column width, but you must explicity define the standard column width
for columns 3, &, and 8 in the ColumnWidth record. You can specifty standard
width for a column in this record with a byte of FF hex (255 decimal).

RowHeight Record

The standard row height for cell-based applications is one character line.
This is also the only value used in GRiD application programs and none of them
turrently make any provision for setting a row height other than one character
line high.

However, to provide for possible future enhancements, a common properties
record is defined for row height, The format for this record is as follows:

Conmon Properties cprlll
Flag Byte rouHeightID = E6C hew, ASCII *1"
— 1st non-standard row #
* L]

1T - ssasa ——————)

FE | 1=ngth BE ¥ one byte per row
+ | ——— S —
nunber of Rouw height (in char linesd
butes follouwing For each rou Fron ist rou #
"length" through last non-standand rou

Figure 4-13, Row Height Record Format

As you tan see, this record is almost identical to the ColumnWidth records
only the rowHeightID byte (4C hex) is different.

Cell Field Record

The Cell Field properties record defines the settings for arithmetic format
(decimal, integer, etc.), and alignment (left, center, right) within
individual cells. This record overrides the settings of the column or row
properties records and would be created as a result of the user setting
properties using the CODE-P command for a cell or range of cells. The format
for the Cell Field property record is shown in the following illustration:

Comreon Properties and Options 4-13

Connon Properties — cprlIl
Flag Bute cellFieldiD = 66 hex, ASCII "fF"
¢:—ist non~standard colunn #

h 4

oﬁh_ﬁdin_ps}]

FE | length 66 { lst CH row #

. _cetunn

4 4+ N
nunrbet of ' n % Fornat-slianmnent
butes Polhou1n9 <L) For mach call Fron
*langth beina {4 04 through last

def ined non-standard cell

Figure 4-14. Cell Field Record Format

The cellFieldPropsiD byte (64 hex) follows the common property flag and the
length word. The next word indicates the first column in the row that is of a
non-standard format or alignment.

(NOTE: although 16-bit words are provided to define the column number and
the row number, no GRiD-developed applications currently allow more than
255 columans or rows.)

After specifying the column number, the next word specifies the row where
format/alignment is being defined. The subsequent bytes define the format and
alignment of each of the succeeding cells within that row. You aust define
the cell format and alignment (even if they happen to be standard) of all
cells in that row until the last non-standard cell has been defined. For
example, if columns 2, 5, 7, and 9 tin a table that is 15 columns wide}! in row
3 are non-standard, the CellFleld record must define the format/alignment of
cells in columns 2 through 9 in row 3. Cells in columns 1 and 10 - 15 will
assume the standard format/alignment, but you must explicity define the
standard format/alignment for cells in columns 3, &, and 8 in this Cell Field
record, VYou can specify standard format in this record with a value of 31
{decimal) and standard alignment for a column in tnis record with a value of &
(decimal). See the discussion of the Column Field record for a descripton of
the fermat/alignment bytes,

Note that you mus* define a Cell Field record on a per-row basis. Each record
indicates the row number where non-standard properties exist and also the
first column within the row where non-standard properties begin.

TableSize Record

This common properties record is not currently used by any GRiD applications.
It is intended to let you gquickly discover the size of an entire table in a
data file. However, since most GRiD-developed applications provide an Append
command, the size of a data file and, thus its table, can be changed without
ever bringing that file into memory. Nonetheless, the Table Size record is
still defined and may be of future use. Its format is as follows:

4-14 Common Code Reference

O

Common Properties cpr Il
Flaa Byte | tableCizeIDl = 74 haaz . ASCIT "t

FE o5 ron |74 | coludhe | fost

. 1
Length = &

Figure 4-13, Table Size Record Format

APPLICATION PROPERTIES RECORDS

Application properties records can appear anywhere within a data file {except
that they cannot appear until after any common properties records). They have
predefined beginning identifiers but the actual contents of the records can be
in any format and are interpreted within the context of that applicatiaon,

The format for the type of application properties record currently used in
most GRiD applications is as follows:

Aprlication Properties Application Properties Record
Flag Byte 10 Cuser-def ined>
FD | length ?ﬁ{ -+application properties ...
T

A word indicating number ofF bytes
(Following "length") in the record

Figure 4-14. Application Properties Record Format (Binary)

These records begin with FD (hexadecimal) and identify an application
properties record that consists of binary data. The word following the
application properties flag byte defines the length of the record -- that is,
the number of bytes following the “length® word.

Application properties records that begin with a byte of FF (hexadecimal) are
expected to contain ASCII (textual) data and are terminated with a
carriage-return line-feed pair (just like a data record). The format for this
type of record can be illustrated as follows:

Common Properties and Options 4-15

Application Properties
Flag Bute

Line Feed
Carriaga Return-—il

-

FF application properties CASCIID oo | OH

Figure 4~17. Application Properties Record Format (ASCII)

This type of properties record is currently used only in SRiDPian to allow

A5CI1 formulae describing c
binary format with its "len

pll definitions, Other GRiD applications use the
gth® word to store application properties records,

PROPERTIES RECORDS COMMON CODE ROUTINES

The Common Code package provides several routines to simplify the handling of
properties records, The available calls and their purppse are as follows:

Comaon Code Call Purpose

AuthorDfThisFile

SkipProperties

GetNextRecord

FinalizePropertieslength

For a complete description

4-16 Common Code Reference

Returns the author product code word and version
byte from the first common properties record in a
gata file. You tan then decide whether you need to
look at application properties records in the file.
Skips over all the common properties records in a
data file.

Returns a pointer to the next retord in a data file
and also returns the length of the record., VYou can
also specify that the call automatically skips over
all application properties records in the file if
you are not "author of this file".

Ealculates the current length of all the common
properties records in a data file and records that
value in the file header for the file when it is
written to a device. This value lets the
SkipProperties call skip over the common properties
when the file is subsequently read.

of these calls, refer to Chapter 12,

5 y
_

CHAPTER 51 BTRINGS

The Common Code string routines add ASCII character string manipulation to

PASCAL.

The strings are dynamic structures that can be allocated as needed

while a program executes. They avoid PASCAL's rigorous type-checking, so
their length does not need to he defined until they are referenced in a

program,

DATA STRUCTURES

TYPE StringDescriptor =

RECORD

len,max: Word;

dummy: Byte;

chars: ARRAY [!..65535) OF Char;
END;

StringDescriptors have these elements:

len

max

dummy

The current length of the string, It may vary from 0 to max, Do NOT
allow it to exceed string.max,

The maximum length of the string in characters. NEVER MODIFY MAX
because the memory allocation routines refer to it when they create
or dispose of the string. Also, do NOT refer to a character position
beyond the max, because your doing so may destroy the memory space of
other variables.

A dummy variable that was included so that PASCAL strings will be
compatible with PL/M strings. The dummy enables the PL/M character
array to be declared beginning with a 0, because PL/M arrays must
begin at 0. Then, both PASCAL and PL/M can refer to all strings by
beginning with string.charsl1].

Strings 5-1

chars An array of characters, which is the actual string itself. Even
though the string array has been declared 653353 characters long, you
would never actually allocate a string this long. This “dummy
length® enables the string package to allocate strings of different (rw
length during program execution. Yopu can pass these strings as VAR -
parameters because they are not PACKED.

Note: These string structures must not be allocated with PASCAL allocation
routines. You must create and dispose of them with the special procedures
(NewString and NewStringlLit) described below.

TYPE BtringPtr = ~StringDescriptor;

The StringPtr is the most common device for actually referring to a string or
passing it as a parameter of a procedure. In fact, this pointer structure is
what permits the string package to create and dispose of strings dynamically.
Many common code and string routines require StringPtrs as their arguments.

& TYPE Comparison = (equal, less, greater);

A value of type Comparison will be returned from the string comparison
routines (EqualStrings and CompareStrings). A result of less or greater means
that the ASCII values of some characters in one string are numerically less or
greater than those in another.

THE STRING ROUTINES (T“
gt

Coamon Code provides routines to allocate and deallocate strings, compare and
modify strings, convert strings, and operate on substrings. 1In this chapter

we will provide an overview of the routines available and give brief examples
of their use. Complete descriptions of the individual routines are provided

in the alphabetically ordered reference chapter -- Chapter 12,

Allocating and Deallocating Btrings

Two Coamon Code functions are provided to allocate strings and a third is used
to deallocate strings.

NewString Allocates memory for a new string of a specified length and
returns a string pointer to that area in memory.

NewStringlLit Takes a literal string, allocates memory for it, and returns a
string pointer. The maximum length (max} and current length
{l1en) of the new string is the length of the literal
characters,

FreeString Given the StringPtr to a string, FreeString will release the
memory that the string occupied and return that memory to the
PASCAL heap.

5-2 Common Code Reference

%, ;

g

CAUTION: ONLY NewString and NewStringLit WILL PROPERLY ALLOCATE SPACE FOR
STRINBS. NEVER call New(StrinaPtr) because New will allocate all 65535 bytes
according to the declaration of String™,charsl!..5655351 above,

When declaring your own static variables to deal with strings, you must
declare them to be StringPtrs, NOT Strings. 1If you declare a static variable
as type String, the compiler will try to allocate 65535 bytes for
String”.charsil..65535] according to the declaration of the String record.
You should declare the variable to be of type StringPtr and then assign it
with the value resulting from a call to NewString or NewStringlit.

Note: you must NEVER modify String®.max, because FreeString uses that number
to determine how much memory to release to the heap. Other data values may be
incorrectly released if String~.max is changed from its original value,

Comparing Strings
Two functions are provided to compare strings:

Equalstrings Compares two strings character by character and returns True if
they have the same characters and the same number of
characters.,

CompareStrings Compares the ASCII values of two strings character by
character, from left to right. Thus the greater string will be
the one containing the first character with a higher ASCII
value. [If two strings match up exactly except that one string
has additional characters, then the string with the extra
tharacters will be the greater one.

Modifying Strings

Twelve different routines are provided by Common Code to give you great
flexibility in modifying strings and manipulating:

CopyString Copies the value of the source string to the dest string.
Both source and destination must be allocated already.

CopyDfString Creates a new string and copies the value of str to it.

AppendString Concatenates a source string to the tail of a destination
string. The source string remains unchanged.

AppendChar Appends a single character to the tail of a destination
string.

AppendAnyChar Appends a single character to the tail of the string. It

disposes of the original str and sets str toc the newly
created string.

Concat Creates a new string containing strl and str2 concatenated
together.
ConcatStrings Creates a new string containing str1 and str2 concatenated

together and disposes of stri and str2 after creating the
new string.

Concathits Creates a new string with the literals litl and 1it2
toncatenated together to let you concatenate string

Strings 3-3

constants,
DeleteFromString Deletes characters from a2 string and then joins the
remaining characters together to close the gap. =
InsertinString Inserts a string into another string. The existing (ﬂ
characters of str are moved aside to make room for the
insertion.
InsertCharInString Inserts a single character into a string beginning at a
specified character position.
SubStringlit Returns the Nth item (specified by count) from a literal
that contains tent items separated by delimiter characters.

Converting String Types

Five routines are provided to perform real number conversion, integer
conversion, and convert lower case characters to uppercase.

UpperCase Converts any lowercase alphabetic characters in the string
to uppercase. It does not shift up numerals, punctuation,
or special characters.

IntegerToString Converts an integer between -32748 and 32767 inclusive into
a string, then returns a stringPtr to the string value.

StringTolnteger Converts a string value into an integer. The string must
represent an integer between -32768 and 32767 inclusive for
the conversion to succeed. The variable “converted”
indicates whether the conversion was successful or not.

RealToString Converts a fifteen digit rea}l number into a string variable.
{(The B087 numeric processor uses fifteen and a half digits
of precision; this routine returns fifteen digits, rounding (j“
off the half digit as necessary.)

StringToReal Converts a string value into a real number. The variable
"converted” indicates whether the conversion was successful
or not. It will convert up to the first fifteen digits,
and drop any extra digits without causing an error. [If the
conversion fails (from incorrect input, for exaaple) the
routine returns 0.

Note that the two real number routines produce real nusmbers of fifteen and a

half digits. They cannot accomodate exponential notation, such as 6.03E+23,

For details, see the Intel BOB7 Fioating Point Processor Manual or the Pascal
Manual,

Miscellaneous String Routines

Five routines are provided to simplify handling of various other strings used
throughout the systeam.

TimeToString Converts time and date information from the D5 to a string
for easy use in an applicatien,
SubProperty Picks a name out nf a string made up of names and special

characters. The special characters are delimiters in the
GRiD-0S5 file system.

5-4 Common Code Reference

B

SetPrefix
GetVersionString

TranslateHeading

Used by the application to set the prefix subject,

Returns a string containing a three numeral version number
of a piece of software. Each process (application) can have
a version npumber,

Translates the input into a centered output string for
printing on an Epson printer. Special symbols are
translated in the upper or lower case.

Strings 5-5

CHAPTER 6. COMMANDS, MESSAGES, AND PROMPTS

These Common Code routines simplify implementation of several commands that
are used in all GRiD-developed applications and provide a standard,
easy-to-use methanism for displaying messages and prompts,

Conmands

The four command-related routines provided by Common Code are listed in the
table below. Two items that are standard on the Transfer menu supported in
all application BRiD applications are "Erase a file" and "Show file
characteristics” The first twp calls listed in the table (CmdErase and
CmdProperties) let applications share the code needed for these activities.
Similarly, CmdMedialsage and GetVersionString are supplied by Common Code
since CODE-U and CODE-? are supported by all GRiD applications,

Routine Bescription

EmdErase Erases a file and displays appropriate prompts and messages.
Used to implement "Erase a file" from the Transfer menu.

CmdProperties Displays the properties of a specified file. \Used to
implement "Show file characteristics* from the Transfer
menu,

CadMedialsage Displays memory and media usage. Used to implement the

CODE-U command.

GetVersionString Returns a pointer to the version number string of the
specified process. Used to display an application’s vers
information as part of the CODE-? screen and when the
application is +irst loaded.

Commands, Messapes, and Prompts

ion

b-1

MESBABES AND PROMPTS

Messages and prompts are text fields that can be displayed anywhere in the
window (full window width). The text is highlighted (inverse video) and its
default position (which is the one typcally used by GRiD applications) is the
bottom of the window. When a message or prompt is erased, it is the
responsibility of-the application to update the necessary rectangle. In GRiD
applications, messages and prompts are handled in slightiy different ways .
The conventions used in 6RiD applications are as follows:

Messages -~ A message should be displayed only until the next keystroke
by the user of the application. For example, the user presses CODE-U to
see mpdia usage, the usage message appears, and remains on the screen
until the user presses another character. The message should always be
tleared BEFORE a character is processed.

Prompts -- A prompt should be displayed only while an application is in
command mode or responding to a MsgExit routire., The prompt persists
until one of the following criteria is satisfied:
1. The user satisfies the condition of the prompt and presses
CODE-RETURN,
2. The user presses ESC to escape the condition of the prompt.

3. The user presses another CODE key to preeapt the current command.

Prompts should be cleared after a character is processed unless the
application is remaining in command mode. For example, if the users
presses CODE-D to duplicate, the prompt “Duplicate: Make a selection and
confirm" is displayed. This prompt should remain displayed while the
user presses arrow keys to make a selection., The prompt should be
cleared only when the user presses CODE-RETURN to confirm the command or
when the user presses ESC or another CODE-key command to pre-empt the
current command.

Note that these conventions are not enforced by the message and prompt
routines; rather they are conventions observed by GRiD applications and which
should be adhered to by other applications for the sake of consistency.

Data Structures

An application and the Common Code communicate message/proapt information by
passing a pointer to a dynamic data structure of type MessageStatus. This
variable must be declared in the application and initialized (dynamically
allocated) by a call to FUNCTION Msglnit. (See Msglnit) The organization of
the MessageStatus record is as follows:

TYPE MessageStatus =
RECORD
messageShowing: Boolean;
stackSize : Byte;
field: FieldPtr;

rect: Rectangley {ares to be updated}
anythingShowing : Boolean;
END;

6-2 Common Code Reference

HessagePtr = “MessageStatus;

messageShowing A boolean that indicates if a message is currently
displayed. If a prompt is showing, or if no message is
-showing, it is false, This field is NOT altered by the
application., It is initialized by Msginit and updated by
the various message ralls,

stackSize Indicates the number of messages/prompts currently showing.
This is NOT altered by the application., It is ipitialized
by Msglnit and updated by the various message calls.

field Pointer to the field descriptor record containing the text
and location of the message.
rect The rectangle that the application should update if the

boolean result of one of the message FUNCTION calls is true.
This value is initialized hy Msglnit, updated by the various
message calls, and read by the applications. It is not
altered by the applications.

anythingShowing PBoolean field that is not used in the current version of the
Common Code message module.

The organization of the field descriptor record pointed to by the field
parameter is as follows:

FieldDescriptor = RECORD
box: Rectangle;
text: StringPtr;
kind: FieldKind;
END;

FieldPtr = “Fieldlescriptor;

Refer to Chapter 10 for a detailed description of this record.

Message and Prospt Routines

The ten message and prompt routines listed below are used to initialize,
display, and clear messages and prompts. Messages and promspts can be
displayed as the only message/prompt line in the window with any previous
messages/prompts erased., Alternatively, they can be "stacked®; that is
displayed above any previously displayed messges/prompts.

Routine Description

MsgInit Allocates and initializes a MessageStatus record and
returns a pointer to the record.

MsgShowMessage Displays a one-line message after erasing any previous

message(s) or prompt{(s). Returns a True boolean if the
application should update the rectangle.

Eommands, Messages, and Prompts &=3

MsgStackMessage

MsgShowPrompt

MsgStackPrompt

MsgShowError

MsgShowDecoded

MsgClearMessage

MsgClearPrompt

MsgExit

Displays a amessage stacked on top of any currently
displayed messages, Erases any previous proapt(s).

Returns a True boolean if the application should update the
rectangle,

Dispays a one-line prompt after erasing any previous
prompt(s) or message(s). Returns a True boolean if the
application should update the rectangle,

Displays a prompt stacked on top of any currently displayed
prompt{(s) or message(s)., Returns a True boolean if the
application should update the rectangle,

Displays a one-line error message after erasing any
previous message({s} or prompt(s) and then locks the
keybpoard for two seconds. Returns a True boolean if the
application should update the rectangle.

Displays an error message specified by a GRiD-DS error code
after erasing any previos message(s) or prompt(s}) and then
locks the keyboard for two seconds. Returns a True boolean
if the application should update the rectangle.

Clears any messages currently displayed but has no effect
on currently displayed prompts. Returns a True boolean if
the application should update the rectangle.

Clears any prompts currently displayed and any messaes that
have prompts stacked on them. Has no effect on currently
displayed messages if there are no stacked proapts.

Returns a True boolean if the application should update the
rectangle,

Displays one of three messages before exiting the
application., Allows normal exit *"Retrieving subjects: In
progress”, memory exhausted message "Dut of nmemory: Confira
to exit", or reboot message "System Error: {code) Confirm
to reinitialize systea.

&-4 Common Code Reference

&

CHARPTER 73 BYTE MANIPULATION PROCEDURES

This chapter describes the byte manipulation procedures, which enable you to
move, search for, and assign values to individual bytes in memory. They are
the PASCAL equivalents to the PL/M String Manipulation Procedures (i.e. byte
strings) as defined in the PL/M-B& User’'s Guide.

These routines provide a very rapid and efficient mechanism for uvpdating the
bit-mapped screen. By altering the memory allocated to the screen, the
screen’s display will change,

These routines use parameters of type Bytes to identify areas in memory. A
segment of memory can be visuwalized as a one-dimensional array of bytes. The
parameter of type Bytes acts as a pointer to the first element of the array of
bytes.

BYTE ROUTINES
Routines are provided to move, find, compare, set, insert, and delete bytes.

WARNING: The two movement procedures can move up to 44K bytes in a segment at
once. Memory areas are NOT PROTECTED by hardware. Use the "move" routines
with care.

MoveRytes Moves data from one location in memory to ancther.

MoveReverseBytes Moves data from one location in memory to another starting
from the end of the data rather than the beginning. This
allows you to move bytes into a destination that overlaps
the source location.

FindByte Searches an array of bytes in memory for a given character,
and returns its position in the array.

CompareBytes Compares one memory area with another one to see whether
they match. They must be the same length.

SetBytes Sets every byte in the destination area to the same given

Byte Manipulation 7-1

InsertBytes

DeleteBytes

value.

Inserts bytes into a specified area of memory. The contents
of the inserted bytes are undefined. This procedure is
useful for inserting new elements into arrays, structures,
strings, etc.

Deletes a given number of bytes from an area of memory; the

remaining bytes are moved together to close up the resulting

gap., This procedure is useful for removing elements from
arrays, structures, strings, etc.

7-2 Conmmon Code Reference

&

CHAPTER B8: MENUS AND FORMS

Commands can request data from the user by presenting a menu or a form. With
a menu, the user selects a single value as input to the Compass. Forms allow
the user to give the computer several values at once. This chapter describes
the routines and techniques available to programmatically display menus and
torms. The technique used is known at GRiD as *Data Driven Menus and Foras®
because a predefined data structure determines both the appearance and
contents of a menu or fora.

NOTE: This technique requires that you have both the Pascal and PLM
compilers. There is another, older and more complicated, method of doing
menus and forms that does not require the PLM compiler. This alternate
technique is described in Appendix C.

A special form, the File form which is used throughout BRiD applications, is
also described in this chapter.

OVERVIEW OF DATA DRIVEN MENUS AND FORMS

The basic concept behind using data driven menus and forms is simple. You
need two modules. One module is written in PLM and contains data structures
which specify what your forms and menus look like. The other module is written
in Pascal and talls Common Code routines to display these menus and foras.
When the Pascal routine calls Coemon Code to display a menu or form, it passes
the name of the PLM data structure representing that menu or form as a
parameter. Common Code takes care of the rest.

Why use PLM at all? Couldn't it all be written in Pascal? VYes it could, but
Pascal does not let you declare variables with initial values and PLM does.

It the data structures were declared in Pascal then extra code would be needed
to initialize them before they could be used.

Menus and Forms 8-1

DATA DRIVEN MENUS

A menu is one of the simplest means of getting input from the user. GRiD {fﬁj
menus eliminate unnecessary and repetitive typing. Instead of typing, users b
select standard inputs by pressing arrow keys and CDDE-RETURN.

With Common Code routines, you can add BRiD menus to your programs very
quitkly, Once you're familiar with them, they will be easier to program than
traditional methods of getting the user‘s input. And, they’'ll make your
programs easier to understand and to use.

You don't have to understand the structure of the entire Common Code in order
to program a menu. You can copy the example code given in this chapter, and
modify it for your application.

Typical items for a menu include:

o Parameters to a program. The program will take the selected parameter
instead of any of the others.

o Operations to be completed. The program completes the selected
operation instead of any of the others.

The sample menu that we illustrate in this chapter is similar to the Transfer

menu that is used throughout GRiD applications. This basic example is a

building block that you can flesh out or modify to aeet your needs. It

displays seven items on the screen for the user to select. Each itea

represents an operation. When one of the items is selected and {confirmed,} (i‘
the computer would perform the selected operation. (7o keep the example -
simple, we will not show any of the code that would performs the selected
operation.)

A GRiD menu returns information telling you which one of the possible menu
items the user picked. Figure 8-1 shows a sample GRiD menu. All 6RiD menus
resemble this one.

]Eggﬁ thig file 1
wchange for another file

Inciude a file

Write to a file

Append a file

Erasa a file

Show characteristics of a file

Sample: “elecht item and contltn

Figure 8-11 A Sample Menu
A menu consists of:

Menu items A vertical list of objects or operations, such as commands, file

o

B8-2 Common Code Reference

ey

L

&

titles, or storage media, By confirming an item, the user
tells the Compass to operate with that item instead of the
others. The items are display-omnly fields that the user cannot
modity.

Outline A moving indicator that surrounds the current item. A
triangular cursor never appears within this outline, because
text can never be typed into a menu. You select an item by
moving the outline to the desired item and confirming {(pressing
CODE-RETURN).

Message Line An informatipnal message instructing the user as to what action
te take with the amenu.

Menu Data Structures and Types

The DataMenuConfirmed routine that displays menus is given a peinter to a PLM
data structure when the function is called. The pointer is defined as
follows:

Somefirray0fBytes = ARRAY [1..1] OF CHAR;
PoipnterToSomeBytes = "SomeArray0+fBytes;
DataMenuType = FointerToSomeBytes:;

The array of bytes being pointed to is the data structure that is defined by
the PLM module.

Figure 8-2 shows the PLM data structures that define the menu shown in Figure
8-1, The PLM data structures are almost self-explanatory. The first data
deciaration {the "sampleMenuTemplate”) defines the constants which are the
menu items to be displayed for the menu. A tilde () delimits each menu item
and a vertical bar {produced by pressing Code-Shift-;) marks the end of the
list of items, The second data declaration defines a pointer to the menu iten
data. Note that names for the two data items, "sampleMenuTemplate" and
“theSampleMenu” are user defined and that the name “sampleMenuTemplate®
appears in two places. When you change one then you must change the other.

JHHERHHEHERRERHE Sasple apnu HEERERERHESRERE/

DIL sampleBenuTeaplate (&} BYTE PUBLIC DATA

(*Save this file*’,

‘Exchange for another file*’,

‘Include a file*’,

‘Write to a file*’,

"Append 2 file®’,

‘Erase 2 file*’,

‘Show characteristics of a file*l’);

BCL theSaapleMenu PTR PUBLIC DATA {BsampleMenuTeaplatel;

Figure 8-2: PLM Data Btructures for Samplie Menu

Menus and Forms B-3

Data Driven Menu Routines

One Common Code function {(DataMenuConfirmed) does all the work to implement (ﬂ“
data driven menus. The DataMenuConfireed function displays the menu you have 4
defined in the PLM data structure. It also lets the user select an item by
pressing arrow keys. Note that DataMenuConfirmed cannot act upon the user’s
selection until after the user has pressed CODE-RETURN., Pressing CODE-RETURN

is the only way to indicate that the outlined item in the menu should be used

for protessing.

The DataMenuConfirmed function definition is as follows:

FUNCTION DataMenuConfirmed (dataMenu : DataMenuType;
msgStatus : MessagePtr;
msg : StringPtr;

VAR rect : Rectangles
keyProcess : WORD;

VAR selection : INTEGER;

VAR ch : CHAR) : BODLEAN;

When the function is called, it is given a pointer to the PLM data structure
defining the menu, and pointers to your message area and the proapt to be
displayed with the menu. It returns the selected item and a Boolean
indicating whether the menu was confirmed. Refer to Chapter 12 for a complete
description of the parameters for DataMenuConfirmed.

Data Driven Menu Example <j"“
-

Figure B-3 Shows the Pascal procedure that displays the aenu shown in Figure
B-1. The Coamon Code function call "DataMenuConfirmed” displays the menu.

8-4 Common Code Reference

{ }
PROCEDURE SampleMenu;
VAR str: StringPtr;
rects Rectangle;
jtemSelected: Integer;
ropfirsed; Boolean;
BEGIN
str t= Concatlits {TransferMsg, SelectMsgl;
rect t= windowRect;
confirsed := DataMenulonfireed
(theSaapleNenu,
850,
str,
rect,
cursor. keyProcess,
iteaSelected,
th);

IF confirmed THEN
BEGIN
CASE iteaSelected OF
HH { do appropriate action for *save"}
t 3 { do appropriate action for "exchange®}
{ do appropriate action for “include®}
{ do appropriate action for "write")
{ do appropriate action for *append®)
b: ; { do appropriate action for “"erase®}
IH { do appropriate action for "show characteristics"}
B: 5 { do appropriate action for "print®}
OTHERWISE;
END;
END;
END;

iH

-y S wms WS sms W e

Figure B-3:1 Pascal Procedure to Display Bample Menu

Appendix B contains complete source listings and the link command file for a
progran that displays the sample menu.

If the user did not press CODE-RETURN to leave the menu, the variable ch
contains the character which the user pressed to exit the menu instead. Any
character except CODE-RETURN or Arrow keys will cause the menu to be exited.
In this example, DataMenuConfirmed does not do anything with ch, but it
returns the value of the variable "confirmed,” so that the calling procedure
will know whether an item on the menu was confirmed or not.

Meaus and Forms B-5

DATA DRIVEN FORMS

Forms are similar to menus in that they capture information specified by the
user but they are different from menus in the following ways:

o

o

Forms can let users change the settings of several items. Henus let thea
confirm only one itenm.

Users can type their own settings., Forms do not have to limit them to
predefined choices .

When users press CODE-RETURNMN, they confirm the settings of all the form
items, not just the currently outlined setting.

Forms enable users top change the settings of many parameters with very little
typing. They replace the tedious practice of stepping through a list of
parameters and requesting settings {and corrections) from the user,

o

When a parameter’'s value must come from a predefined set, forms can force
the user to choose from correct settings only. The user avoids the
frustration of typing in a value, only to have the computer reject it.

Forms present all the parameters at once. The user decides which parameters
to change first,

Corrections are simple: the user returns to the ites to be corrected, and
changes the setting displaved. No time is wasted by advancing past correct
values to find an incorrect one.

From & programmer’s point of view, a form is a matrix of fields that has at
least two columns:

item column A column of fields that identify the data being changed.

They are not used in processing the fora's settings. The
user cannot move the outline into the itea column or change
the items there.

Setting column A column of fields that the user can modify. The data values

in the setting column indicate an initial setting, or some
choice or typed input by the user. The form stores these
modified settings in its own data structure. The settings can
be kept stored in the fore or they can be copied into other
variables in your program,

Figure B-4 shows a sample form.

B-

6 Common Code Reference

®

Editable numeric field =} {
Chaice only fiald 1rst chol1ca
Editable~choice field A cheoice

Editable real number field 35.6080

Tupeface Suystem~wide

Printeae EpsonF#iod

Plotter HFP

Sample: Fill in Fforrm Cont 1

Figure B-4: A Sample Form
Thaz form illustrates all the currently defined items for GRiD forams.

o The first item is an editable integer-numher with no choices. The user
is expected to enter an integer value to set such things as document
width, column width, and so on.

n integer

Editable numeric field n I

e mf me mmVe. PEwl o i Sl arvey—y e gy gy

a The second item is choice only. The user selects one of the displayed
choices such as "Display headings" or "Don't display headings”.

First choice
Editable numeric field f=1%)

Choice onlu fi=ld [gecond cholce {
Pl b aba 1 & vl o i e Mo =1 0 Py - ——

o The third item is an editable string with choices. The user can either
choose ane of the available choices or enter a string to specify a
choice not offered. For example, the user might select the choice to
display text using window width or can specify the line width to be used
for display of text.

text string REE=zE0="]

Editable numeric field 88
Choice onlu field Second choice
Editableschoice field i 24 |

FAitohlao razl nombar fiald B GO

o The fourth item is anp editable real-number with no choices. The user is
expected to enter an real number to set such things as precision. Form
items that are editable real numbers will be displayed with four digits
after the decimal point. 1If the user enters a number without decimal
places, the system still treats it as a real number and supplies the
four decimal digits.

Menus and Forms 8-7

4 real nuntrer (ﬂﬁ

Editable numeric field ea J
Choice only field Second choice =5
Editable~choice field 28

Editable, real number field |

Tupefare Sustem—Lh s

If you want some other format, you can dislay an editable string and do
the cnversion yourself,

o The #ifth, sixth, and seventh items are special kinds of choice-only
items. They display the available font, printer, and plotter files in
the choice band.

Built—in GRiD 3x? GRiD 4x? GRiD 53
Editable numeric field ga
Choice only field Second choice
Editableschoice fisld 2a
Editable real number fi=ld 4
Typeface Sustem—ide
Pt oo~ nemm []

These items auvtomatically display all aof the files with a Kind of

“Font", "Printer®, or "Plotter" that are in the Programs directories

when the system was booted. The user can scroll to the desired choice
displayed in the choice hand, Notice that if all the choices do not fit

in the choice band, the additianal choices are automatically scrolled (i:

into view.
GRiD 4x7 GRiD 53 GRiIiD Sx7 GRiD 64 MslUg=58 FC
Editable numeric field (2]
Choice only field First choice

Editable/choice fimld
Editable real number field 4

Typeface (LR1D B |
Pir=intav TR

Foras Data Structures and Types

Several Pascal data structures and types are used with data driven foras.
TYPE SomeArrayDfBytes = ARRAY (1..11 OF CHAR;
PointerToSomeBytes = “Somefirray0fBytes;
This pointer is used to keep track of different forms when you have a number

of forms at once. It points to an array that contains the definitions of the
labels and choices of the form and which also holds the form's data. (The

PN

8-8 Common Code Reference

O

labels and choices are initialized using the information defined in the PLM
data structure.)

*# TYPE DataKindType =
{stringKind,
numberKingd,
choicelnlyKind,
fontKind,
realNumberKind,
printerKind,
plotterKind);

This enumerated type defines all of the different kinds of choice items you
tan use with forms.

TYPE DataFormModeType =
{normalDataForm,
initOnlyDataForm,
runOnlyDataForm)

You can specify three different kinds of forms: normal, initialize only, or
run anly. HWhen you specify a "normal” data form, the form is immediately
displayed by DataFormConfirmed and the results are stored in the form when it
ts confirmed. You would use the "initOnlyDataForm® amd “"runOnlyDataFora®
types for more advanced programming technigques. If you specify
"initOnlyDataForm", the form will not be displayed. A common use of this mode
is to discover the rectangle that will be available for your form before you
actually display the form, If you call DataFormConfirmed with
"runbnlyDataFrom", the form is dispayed but it is not initialized. Therefore,
if you use this mode, you must always call the routine after you have called
it with the "initOnly" mode. When you call the routine in the "normal" mode,
the form is both "initialized" and “"run".

TYPE DataKindAliasType = RECORD

CASE INTEGER OF
1 : (string : StringPtr);
2 ¢ (number : INTEGER);
3 3+ (realNumber : REAL);
END;

This record defines the three different kinds of data choices that can be used
in forms.

¥ TYPE DataRowType = RECORD
changed : BODLEAN;
rowkind : DataKindType;
currentChoice : INTEGER;
tempChoice : INTEGER;
theData : DataKindAliasType;
tempData : DataKindAliasType;

END;

Menus and Forms B8-9

The DataRowType record is the structure where the choice data for each row
{item) on the form is stored. The contents of this record are as follows: (::

changed A Boalean that is set true if the choice for this row was
changed from its previous setting. You cap use this parameter
as a "dirty" bit to determine if you need to examine the
record.

rowKind Specifies one of the seven kinds of possible chpoices.

currentChoice An integer identifying the current choice for an item. 0n
entry, determines which choice will be displayed as current
choice for each item. On return, contains the choice that was
confirmed. NOTE: You should always set the current choice even
if the field consists only of an editable field (set
currentChoice = 1), Otherwise, the "changed® Boolean will not
be set correctly.

tempChoice fn internal variable used by the function itself. Should never
be changed.

theData The actual numeric or string data that is the current choice.

tempData fin internal variable used by the function itself. Should never

be changed.

The last data type is the form itself.

% TYPE DataFormType = RECORD
form : PointerToSomeBytes;
numitems : INTEGER;
labelsAndChoices : PointerToSomeBytes; ™
choiceLines : INTEGER; (::
rows : ARRAY [l..11 OF DataRowType;
END;

The DataFormType record defines the location of the form and its appearance,
and contains the form's data. The contents of this record are as follows:

form A pointer used internally by the DataForaConfirmed
function. Initialized to NUL. Should not he changed by
the user.

numltens The nuaber of items on the foram.

labelsAndChoices A pointer to the PLM data structure that contains the iten
labels and choices to be displayed on the form.

choiceLines An integer that determines how many vertical lines will be
used to display choices. A value of one displays all
choices on a single line and scrolling is horizontal {as
shown in the sample forms)., Values greater than one
display choices vertically within the number of
“choicelines" specified and scrolling is vertical.

rows An array of DataRowType records holding the data that is in
the form.

3

8-10 Common Code Reference

e

o

- -

Figure 8-5 shows the PLM data structures required to display the form shown in
Figure B-4, This example structure can be used as a template for creating
your own forms. The items that need to be modified when creating a new form
are marked with numbers, These are described on the following page.

JEREEEREREEEEEEE Sample

DCL saspleForaiteatount LlT

DCL sampleForaRowSize LIT (Y8 /¢ 14 times ites count #/

DEL saapleForalabelsAndChoices (#) BYTE DATA
{'8Editable nuseric field“An integer*!’,
“¥haice only field*First choice“Second choice*i’,
"$Editable/choice field*A text string™A choice™!’,
".Editable real nuaber field“A real nusber*i’,
‘Typeface™!’,
“#Printeri’,
‘=Plotter™i’};

DCL theSampleFora STRUCTURE
{fora PTR,
nualtess INTEGER,
label sAndChoices PIR,
choicelines INTEGER,
rows (saapleforeRowSize} BYTE)

PUBLIC DATA

{nullPtr, I+ fora #
saspleforalteaCount, f¢ nualtens #
€saspleForatabel sAndChoices, /% iteas t/

3] /% choicelines #/

END;

Figure B8-51 PLM Data Structures for Sample Fora

@ The data structures for each form must have a unique name, Thus, if you

were defining a "properties” form, you wouid change all occurences of the
phrase "sample® to “"properties” throughout this PLM data structure.

(@ This is the number of items in the form (seven, in our sample).

(® This number MUST be fourteen (14) times the number of items in the form.

(It is used to allocate space for data.)

C) This is where you specify how the form will look and the characteristics

of each item, The first character in each line determines what kind of

Menus and Forms B-11

item this is according to the following convention:

- an editable integer-number item. If you want an editable number
item to initially display blank, you must initialize the number to
*-MaxInt", {e.g. theSampleForm.rowll]l.theData.number := - MaxInt;) (F“

See the example that follows for an illustration of this method. -

? +~ a choice-only itenm

$ - an editable string and choice item

« - an editable real-number itenm

& - a font item. A special "Choice only" item of font files.

+ = a printer item. A special "Choice only" item of printer device
files.,

= - a plotter item. A special "Choice only" item of plotter device
files,

Following this initial character is the name of the item exactly
as it is to appear in the form. The item name is terminated by
the tilde (™) delimiter character. Then the choice band items (if
any} are separated by tildes and the entire item definition is
ended with a vertical bar (}).

The third item in the example form is an editable choice. It
contains both an editable string and a choice band. In editable
choice item definitions, the editable field is whichever one you
list (define) first. The fields that follow are choice fields.

GD This number determines the orientation of the choice band. The nuasber 1
specifies a horizontal choice band as shown in the sample form., MNumbers
greater than one specify vertical choice bands of that height. If the (r“
choices don't fit within the choice band, they are scrolled automatically o=
{either horizontally or verically) by the DataForaConfirmed function.

Data Driven Forms Routinss

There are five Common Code routines used in conjunction with data driven
foras:

DataForeConfirmed This function displays the defined form. It is
similar to PDataMenuConfirmed. ARefer to Chapter 12 for
a complete description of DataFormConfirmed
parameters.

UndoDataForm This procedure deallocates all the tables and internal
structures associated with a form. 1Its second
parameter is a boolean indicating whether you want it
to erase the area occupied by the form, You should
ALWNAYS call this after displaying a fora.

FreeStringsinDataForm This procedure frees all the strings in a data form.

You should only call this after you have copied any
strings from the farm into permanent variables,

B-12 Common Code Reference

IMPORTANT: There is no reason that you have to store
the values of a form in separate variables. You can
leave them in the form. This latter method is often
easier. If you do leave the values in the farm's data
structure then you should never call
"FreeStringsInDataFora”.

ExactCopy0DFfString This function makes an exact copy of an indicated
string and returns a stringPtr to the copy. (The
“CopyDfString” function described in Chapter 5 is
similar, but returns a string with .len set equal to
.max, The exact copy will have ,len set to the
current .len of the indicated string.

String0fForwmitenm This function returns a stringPtr to the text actually
displayed in a form item. It would be useful if you
wanted to know the text of a choice selection as
cpposed to the number of the choice.

Data Driven Forms Exaeple

Figure B-6 shows a Pascal procedure that displays the form we have been
looking at, It has been marked into four areas which will be exptained next.

Menus and Formes 8-13

PROCEDURE SaepleForm;
VAR iteabelected: Integer;
confirsed: Boolean;

rect: Rectangle;
str: StringPtr;
BEGIN

str t= Concatlits (OptionsMsg, FilllnForeNsgl;

{ Copy variables intc Data driven foras structure. The variables cam be kept
permanently in this structure, }

WITH theSampleFora D0
BEGIM

rowsfi).theData. nusber = theNuaber;

rows{!],currentChoice A Te—
rows(2], currentChoice t= curChoice?;

rows{3], theData.string 1= ExactCopy0fString (theString);
rows{3].currentChoice t= curChoiced;

rows(41, thelata,realNusber := theRealNuaber;

rows{4], currentChoice = 1y
rows[5},currentChoice = curFont;
rows[4).currentCheice := cerPrinter;
rows[7].currentChoice := curPlotter;
END;
rect := windowRect;

confirsed := DataForaConfiraed
{theSaapleFors,
noraalDatafora,
Rsg,
str,
rect,
cursor. keyProcess,
ch);

IF confiraed THEN
WITH theSasplefora DD

BEGIN
theNuaber := rows{!I,theData.number;
curlhoice? := rows(21,currentCheice;
IF rows(3).currentChoice = | THEN

theString := ExactCopyDfString (rows{3).theData.string);

curlhoiced := rows{3).currentChoice;
curChoiced 1= rows{4],currentChoice
curFont := rowsl3).currentChoice;
curPrinter := rows(é).currentEhaice;
turPlotter := rows{71.currentChoice;
FontSetNth {curFont, codel;

END;

FreeStringsInDataFora (theSampleforal;
UndoDataFora {theSaspleForm, TRUE);

END;

8-14 Common Code Reference

Figure B-6: Pascal procedure for displaying fora

@ The values of the items in a form must be stared between each instance of

the form. In this example these values are stored in separate data items.
Betore displaying the form the stored values are copied into the form's
data structure. That is what is happening here.

The items on the right of the assignment statements are variables where
the settings of the form are stored. The "rows" on the left side of the
assignment are record items in "theSampleForm" record. (See the
description of DataFormType earlier in this chapter),

The third item in the form is an editable string. We must make a copy
of the string because the form will be disposed of later and we don't want
to lose the original string.

() DataFormConfirmed displays the form. It is similar to DataMenuConfirmed.

Refer to Chapter 12 for a complete description of DataFormConfirmed
parameters.

@ I+ the form was confirmed then we want to copy the new values back into

the permanent variables. This is done here. The new font is also lpaded
with the call to "FontSetNth".

@ "FreeStringslnDataForm” does just that. You should only call this after

you have copied any strings from the form into permanent variables.
IMPORTANT: There is no reason that you have to store the values of a foram
in separate variables, You can leave them in the form. This latter
method is often easier. If you do leave the values in the form's data
structure then you should never call "FreeStringsinDataFora".

"UndoDataForm" deallpcates all the tables and internal structures
associated with a form. Its second parameter is a boolean indicating
whether you want it to erase the area occupied by the form. You should
ALWAYS call this after displaying a ferm,

Appendix B contains complete source listings and a link file for a program
that displays this form.

Example Notes:

You can reduce the size of your program and make it more readable by placing a
procedure shell around the calis to DataMenuConfirmed and DataFormConfirmed.
Only three parameters would then be reguired to display a menu and two for a
form, {(the menu or form’'s data structure, a stringPtr for the message, and
the itemSelected for a menu} The other parameters used with DataFormConfirmed
and DataMenuConfirmed are usually global variables.

There are two ways of storing the data obtained from a form. The method shown

in Figure B-6 transfers the data into variables which are separate from the
form, However, you could leave the data in the form. The latter case will

Menus and Forms 8-15

probably create less code,

1 you leave the data in the form thepn you shouldn’t call
“FreeStringsInDataFormr". You should always call “"UndoDataForm" because it (jh
frees all the internal tables associated with a form. >

THE FILE FORM

The File form is a special form that is used throughout GRiD applications to
simplify implementation of the Transfer command (CODE-T)}. Figure B8-7 shows a
typical Transfer menu.

isave this +ile §
x¥chanaa tor another +ile
Include a file

W-rite to a file

Append a file

Errasa a file

Show characteristics of a file

ot item and contirm

Figure B-7. A Typical Transter Menu

When the user selects and confirms an item from the Transfer menu, a File form
similar te the one shown in Figure B-8 can be displayed by calling the Common

Eode function FileFormConfirmed, (::
Device Hard Disk
Subject Sample
Title |
Kind Text
Password
Next action Get new file and its application
Save changes Before gettina new file

Exochiano=: FLll in form and confirm

Figure B-8. A Typical File Form

The FileFormConfirmed function is similar tp the DataFormConfirmed function in
several ways. Both functions display a form, handle movement of the selection
outline when the user presses the arrow keys, and return with the selected
items when the form is confirmed. With FileFormConfirmed, however, the itenms
on the form are pre-defined instead of being defined by the programmer.

You can vary the content of the form slightly depending on the activity that
is being initiated. For example, the last item on the form ("Save changes”)

need not be displayed unless you are leaving the current file and it has been
altered since the last time its contents were saved.

&

8-16 Common Code Reference

Dev jce Hard Disk

Subject Sanple

Title I
Kind Text

Fassword

Haxt action Get neu File and its application

Erxchange: Fill in ForM and confirm

Similarly, the second-to-last item ("Next action") need not be displayed for
such operations as "Erase a file" or "Include a file" when you are not leaving
the current file and “"following® to another file and/or application.

Deu ice Hard Disk
Subject Sanple
Title

Hind Text
Passuord

Include: Fill in fora and confirm

The FileFormConfirmed function lets you specify when these two items should or
should not be displayed.

When the "Next action" item is displayed, two different combinations of
choices can be displayed for the "Next action” item. If the Transfer
operation being initiated is one where the user is given the choice of
"following" to the selected file and immediately beginning work on that new
file, then you would display the following three choices for "Next action":

Menus and Forms B-17

rl|l{llll1ll||'llllzlllllllll

31"1IIIII,*III[Illllslll{lilllsll"

EEE neu t‘:ie ang 1!5 BPPIIC-B!IOI'I

bet new File onlu

Device Hard Disk

Subject connoncode

Title

Kind Teut

Passuord

Hext action lﬁeep current File |

Hrite: Fill in torn and contirn

These are the choices that GRiD applications display for "Write to a file" and
"Append to a file". 1§ the Transfer operation is one such as "Exchange for
another file" that precludes keeping the current file, then the first choice
{"Keep current file") for "Next action” can be suppressed.

When you call the FileFormConfirmed function you can set the initial choices
that are to be displayed for each item. For example, for "Append to a file"
operations, GRiD applications initially set the "Next action” item in the File
form to the "Keep current file" choice since it is assumed that this will be
the choice must frequently used. When the form is confirmed, the function
returns the actual choices selected by the user.

Fathnare Defaults

When the File form is displayed, you can specify which parts of the pathname
{Device, Subject, Title, and Kind) are to be left blank and which parts should
be defaulted (either to explicitly defined settings or to the current prefix).
BRiD applications typically default the device and subject to the current
prefix, leave the Title blank {don‘t default}, and default the Kind to the
same kind as the current file. For example, if the current prefix were "Hard
Disk'Sample’, GRiDHrite would let the Device and Subject default to the
prefix, and would default Kind teo Text; Title would be left blank.

8-18 Common Code Reference

Next action Heep current File
Save changes BeFors getting new File

Urit=: Fill in Fora and confirn

Device Hiyrd Disk

Subject {sanp le §
Title

Hind Tent

Fassuord

Notice that the selection outline and cursor are pesitioned at the Subject
The FileFormConfirmed function also lets you specify the pathname item
on the form where the selection outline and cursor should originally be
pesitioned when the form is displayed.

item,

We will summarize the typical settings and values used by GRiD applications
when displaying the File form after we have described the data types used in
conjunction with FileFormConfirmed.

File

Form Constants and Data Types

Seven constants are defined for the FileFormConfirmed function:

DevicePart =1;
SubjctPart =2;
TitlePart =3;
KindPart =4,

PasswordPart =53
ExchangePart =é;
SavePart =73

These constants correspond to the seven items that can be displayed on the
form. The ExchangePart corresponds to the "Next action” item and the

File

SavePart corresponds to the "Save changes” iten.

Six data types are used with FileFormConfirmed.

This
what
will
this

#TYPE FFModeType =(FFGet, FFPut)

enumerated type is used in combination with other conditions to deteraine
message (if any) the function should display below the File form. WHe
describe the messages and the circumstances when they are displayed after
discussion of data types. NOTE: The nomeclature of “Get" and "Put" is a
carryover from an earlier, more primitive Coamon Code function and, while not
very apropos in this context, they have been preserved for historical reasons.

Menus and Forms B-1%

#TYPE FFExchangeMode
FFExchangeAndSave)

FFExchangeMode determines
"Save changes" items as f

FFNnExchangedrSave

FFExchange

FFExchangeAndSave

= {FFNoExchangeOrSave, FFExchange,

whether the form displays the "Next action” and
ollows:

Display neither "Next action" nor "Save changes”.
Typically used for such activities as "Erase a file"
and "Show file characteristics” when it is apparent
that the user is remaining within the current file
and application.

Display "Next action® only. Typically used for such
activities as “Append to a file" or "Hrite to a file"
when the user may be leaving the current file or
application but there have been no changes made to
the current file since the last time it was saved.
Display "Next action® and “Save changes". Typically
used for such activities as "Append to a file" or
"Hrite to a file” when the user may be leaving the
current file or application and there have hkeen
changes made to the current file since the last time
it was saved.

#TYPE FFExchangeResult = (FFDontExchange, FFExchangeFiles,
FFExchangeApplications); (PETER -- HOW ABOUT RENAMING THESE T0

Nexthction??)

FFExchangeResult specifies what the initial or default choice for the "Next

action® item should be and indicates which one of the choices was selected and

confirmed by the user.

I+ the initial value in FFExchangeResult is either FFExchangeFiles or
FFExchangeApplication, then the "Keep current file" choice for "Next action”
is not allowed and will not be displayed as a choice in the form, For

example, if the activity

being initiated is "Exchange for another file", GRiD

applications initially set FFExchangeResult to FFExchangeApplications so that
the form appears as follows:

8-20 Common Code Reference

~

—

R

@
y

et pew ri1le and 1ts application

ey ice Hard Dizk
Subdect Sanple
Title

Kind Text
Passuord

Mzkt action Iget new File and its application i
Sawe changes Betore gething new File

Exchange: Fill in Form and confirn

The logic here is that if the user is obviously going to be exchanging either
the current file or application then you do not want to present the
meaningless choice of "Keep current file", In situations such as "Append to &
file" or write to a file", however, where the user may want keep the current
filey, you must set FFExchangeResuit to FFDontExchange in order to display the
“Keep current file" choice.

*TYPE FFSaveResult = (FFSaveFile, FFDontSaveFile); PETER - HGWABOUT
FFS5aveChanges??)

FFSaveResult specifies what the initial or default choice for the "Save
changes" item should be and indicates which cne of the choices was selected
and confirmed by the user.

#TYPE FFDefaultType = (FFDefaultThis, FFDefaultThisStartHere,
FFDontDefaultThis, FFDontDefaultThisStartHere);

FFDefaultType specifies which of the File form pathname items (Device,
Subject, Title, Kind) should initially be left blank and which should be
supplied from the default values contained in the pathName parameter of the
FileFormConfirmed function, If It can also specify the initial location of
the selection cutline and cursor on one of these four items. If you specify
"DontDefaultIf”, that part of the pathname is ieft blank. If you specify
"Default” for Device or Subject and do not supply a default setting, the
current prefix for these items is used. As mentioned before, GRiD
applications use the prefix default for Device and Subject and supply a Kind
default that is the same as that of the file currently being operated on. The
Title is usually left blank (no default).

#TYPE FFDefaultTypeRec = ARRAY[DevicePart..KindPart] OF FFDefaultType;

Menus and Forms 8-21

This array contains elements for each part of the pathname. Each element
specifies whether to use that part of the pathname as a default in the foras. (j“

File Form Messages

The FileFormConfirmed function can generate six different messages to prompt
the user when the File form is confirmed. These messages ask the user to
verify that a new file is to be created or that an existing file is to be
overwritten or notify the user that the form has been incorrectly filled out,
These messages are displayed in the same area as the user-supplied message and
are automatically removed and replaced with the user-supplied message when the
user presses any key (except ESC or CODE-RETURN). The messages and the
situations when they are generated are as follows:

"Confirm to overwrite old file"

o fileMode parameter for FileFormConfirmed is not "old file®
o AND FFMode = FFPut

o AND the specified file already exists

“Confirm to create new file"

o file or subject does not exist

AND FFMode = FFGet

AND fileMode parameter for FileFormConfirmed = "update file"
AND FFExchangeResult is not FFDontExchange

o 0o

"All items except password must be filled in"
o any item except password in the form is biank when the form is

confirmed (::?
J

"Wildcards not allowed here”
o the wildcard character (CODE-W) is entered in an item

“Use GRiDManager to assign passwords®
0 file or subject does not exist
o AND Password item is filled in

“DEL CTRL ™~ * | not allowed here
o if any of these characters are entered in the form

Typical FileFormConfirmed Settings

Table 8-1 illustrates how a typical GRiD application sets the various
parameters when calling FileFormConfirmed. You will notice that the majority
of the parameter settings are the same regardless of which Transfer coamand
activitiy is being initiated.

8-22 Common Code Reference

Table B-1. Typical parameter settings for FileForalonfirmed

FFiode Defaukt attach file access Exchange FFExchangeResult
dev Subj Title Kind Mode Mode Hode {Input)
Save FFPut - Yes Yes Mo Yes True {pdate Update NoEx/NoS Don't Exchange
Exchange FFBet Yes Yes No Yes True Update Read ExAndSave Don’t Exchange
Include FFGet Yes Yas Ho Yes True 0Oid Read NoEx/NoS Don’'t Exthange
Write FFPut Yes Yes No Yes True New Update ExAndSave Don‘t Exchange
Append FFGet Yes Yes No Yes True \Update Update ExAndSave Don't Exchange
Erase FFéet Yes Yes No Yes True D014 Update MNoEx/NoS Doa't Exchange

Characteristics FFGet VYes Yes No VYes False Old Update MoEx/NoS Don't Exchange

Exchanging Applications

If the File form is confirmed and the user has specified a "Next action" of
“Get new file and its application", the functien FFExecuteCommand is used to
get the new application and file. This function requires only the file name
{as returned by the FileFormConfirmed function) as its input. It passes this
file name to the system Executive which retrieves the appropriate application
to work with that file. For example, if you pass a file name with a Kind of
“Text™ to FFExecuteCommand, the Executive looks for an application program
Wwith a Kind of “Run Text™ and loads that program and the specified text file
into memory.

Menus and Forams 8-23

CHAPTER 93 FONTS

The Common Code package provides several routines to simplify the use of
multiple fonts {also know as typefaces) within applications. The font
routines let you specify (either by name or index number) the font that is to
be loaded into memory and used by an application as the current font.
Routines are alspo available to let you obtain the name or index nuaber of the
current font and to determine how many fonts are currently available in the
system.,

The font-related routines are as fopllows:

Call Purpose

FontCount Returns the number of fonts available in the systen.

FontSetNth Sets the font specified by its index number (Nth) as the
current font and loads it into memory.

Font5etName Sets the tont specified by name as the current font and loads
it into memory.

FontNthName Returns the name of the font specified by its index number
{Nth),

FontGetN Returns the index number {N) of the font specified by its name.

Refer to Chapter 12 for detailed descriptions of each of these calls.

During the boot procedure executed by the Compass, Coamon Code builds a list
of such things as printers, plotters, and fonts that are available in the
system, This information is made available to application programs so that it
can be displayed in forms, such as an -option form., (See Chapter B for a
discussion of data-driven forms.} After such a form has been confirmed, the
bataFormConfirmed procedure returns an integer that indicates which font has
been chosen as the current font. This integer can then be used by FontSetNth
to load that font into memory. For example, the following example functiaon
(FontChanged) rompares two variables (tempCurFont and curFont) to see if the
present font {curFont) is the same as the value returned from

Fonts g=-1

DataMenuConfirmed {(tempCurFont), If it is not, FontSetNth is used to load the
new font into memory.

FUNCTIDN FontChanged : BOOLEAN; (:ii:
VAR curFont, teapCurFont 3 INTEGER;
BEGIN .
FontChanged 3= FALSE;
IF teaCurFont {> curFant THEN
BEGIN
FontSetNth (teapCurFont, codel;
IF code ¢> okCode THEN
DisplayError (code)
ELSE
BEGIN
cerFont := tespCurFont;
FontChanged = TRUE;
ENDy
END;
END;

FontNthName can also use the index integer returned by DataFormConfirmed to

pbtain the name of the current font. An application might need the name of

the current font so it cab write this name into the Common Properties record
associated with the current data file. The following example procedure
{WriteFontName) obtains the name of the current font using FontNthNaae and

then writes that name to the common properties record of the data file. (See
Chapter 4 for a discussion of Common Properties.) (::

PROCEDURE WriteFontName;
VAR curFont: INTEGER;
font: StringPtr;
BEGIN
font 3= FontHthHame (curFont)j
IF font (> NIL THEM
BEGIN
WriteByte (comsonPropsByte);
WriteWord (font*.len + {}; {record jength}
WriteByte {fontPropsiD);
FOR i := 1 TO font”.len DO
WriteByte (ORD{font”.charslil)};
FreeString {font);
END;
END;

Similarly, when an application first reads in a data file, it can examine the
Common Properties record of the file to obtain the name of the current font

Q

9-2 Common Code Reference

for that file., FontSetName can then be used to load that font into memory if
it is not the font currently being used., An application can obtain the index
number associated with a font name by using the FontBGetN call, For erxample,
the following example procedure (ParseFontName) reads the name of the current
font for a data file from the common properties record, then sets that font as
the current font using FontS5etName, and then obtains the index number
associated with that font using FontGetH.

PROCEDURE ParseFontName;
VAR ch: INTEGER;
tont: StringPtr;
tode: NORD;
BEGIN
tont 1= NewString (maxFontlength);
font*.len 3= Win (maxFontlength, pRecord*.cossonProps.length-1;
FOR ch := 1 T0 font”*.len DD
tont*.charsich} := pRecord*.coamonProps. textStringlchl;
FontSetNase (font, codel;
IF code = okCode THEN
BEGIN
InitFont; ({Initialize VARs based on font size)
turFont 1= FontBetN (font);
END;
FreeString (font);
END;

Fonts 9-3

CHAPTER 103 FIELDS

This chapter describes the constants and data structures used with fields and
the routines available to display and edit individual fields.

To the user, a field is a rectangular area on the screen that contains text or
numeric values, It can be filled in by the user or the system.

To the programmer, a field is a data structure that contains a text string and
formatting information for that text., The Common Code provides procedures for
formatting the text and displaying the text on the screen.

The contents of a field can be left-aligned, right-aligned, or centered.
Fields can contain more than one line of text. There are four types of
tields, designed to protect data or enable the user to interact with it.

Editable Editable fields allow the user to edit their values by
typing, backspacing, or pressing arrow keys to move within
the field.

Display-Only The user cannot alter the values of these fields.

Choice Choice fields can contain only settings from a predefined

list, They are used only within forms, as described later.

Editable-Choice Editable-choice fields can contain settings chosen from a
predefined list, or the user can edit their values by typing,
backspacing, or pressing arrow keys. They occur only in
forms, as described later.

Fields 10-1

CONSTANTS
The following constant defines the character location of a field, in pixels: (71:

CONST bottomMargin (= 1} distance from the lower
field boundary to the
one-pixel line beneath
the descenders

The other parameters that determine character location are handled by the
Window-related calls such as charHeight, baseline, lineHeight, and
rightMargin., Refer to the GRiD-05 manual for illustrations of these
parameters.

DATA STRUCTURES
& TYPE Alignment = (leftAlign, centerflign, rightAlign);

Alignment controls whether the contents of a field are left-justified,
right-justified, or centered with regard to the field boundaries. All lines
in a multi-line field share the same alignment, though each line is aligned
separately,

% TYPE FieldKind =
PACKED RECORD
editable, choice, editableChoice, numeric: Boolean; (::
align: Alignment
END;

Fieldkind specifies whether a field can be edited by the user and whether the
user can use choice arrows to obtain the field's value. It includes
specifications for formatting numbers and aligning text.

WARNING: editableChoice is a special status bit kept by the field package. Do
NDT modify it. You specify editable-choice fields by setting the variables
editable and choice to True,

()

10-2 Common Code Reference

% TYPE FieldDescriptor

RECORD

box: Rectangle;

text: StringPtr;
kind: FieldKind;

END;
The FieldDescriptor is the fundamental structure thst describes a field and
its data.
box Defines the size of the field and its display location within the
window,

text A pointer to the GRiD string variable of the field's text.

kind Determines whether the field 15 an editable field, a choice field,

both, or neither, according to these combinations:

editable

False

True

True

choice

True

False

True

Resulting field

A display-only field.

1t can be displayed, but not
edited. For example, an itea
DR A MENU.

A choice field.

The user can choose its setting
from among several predefined
options. Only the displayed
options can be chosen,

because the field cannct be
edited,

An editable field.

It may be edited with the
CODE, arrow, and BACK
SPACE keys, including
CODE-BACKSPACE (erase
previous word).

An editable-choice field.
Users can choose among
several predefined field
values that are displayed,
or they can write and edit
their- own values in the
field.

TYPE FieldPtr = “FieldDescriptor;

Fields

106=3

FieldPtr pointers will enable you to keep track of FieldDescriptors directly,
and thus, fields and their contents.

% TYPE FieldEditResult = (ignored, processed, outDfField, bufferFull, C::
fieldFull, escaped, ok)j

Many routines return the FieldEditResult after performing their functions., #An
outDfField condition signifies that the user tried to move outside the current
field. The FieldfditResult should be used to verify successful display of a
character and to control movement between fields. See the FldEditField
routine in Chapter 12 for a desciription of the interpretation of these

results. below.

TYPE CursorDescriptor =
RECORD
field: FieldPtrj
pos: Word;
place: Point;
on: Booleang
keyProcess: Word;

END;

The Cursorlescriptor record stores the logical position of the cursor position
where text may be inserted or deleted in a field.
field Points to the field descriptor of the current field to be edited.

pos The character nffset within the field where the next character should
be inserted,

place The %,y window-relative pixel coordinate of the tip of the cursor
icon,
on Controls the cursor blinking and its on/off status, FldSetCursor

initializes the cursor to the off state.
keyProcess contains the process identification number (PID} of the cursor’s

process.

NOTE: Do not set the place, on, or keyProcess elements; the interface routines
set them directly.

10-4 Common Code Reference

O

o

FIELD ROUTINES

Common Code provides routines to position and draw the cursor, edit and
display fields, move fields and format multi-line fields, The available
routines are summarized below. Refer to the alphabetically ordered function
and procedure descriptions in Chapter 12 for complete details on each of the

routines.,

FldStartkeys

FldSetCursor

FldSetPos

FidDrawBursor
FldEraseCursor

FldReadKey

FidEditField

FldInsertInField

FldDrawField

FldDrawFieldChars

FldInvertChar

FldHilightField
FldDimHilightField

FldFormatlLine

"Initializes" the cursor by starting a process to control
the cursor. It puts the PID of the process into

cursor, keyProcess.

Sets the cursor at the last character position in a
specified field. The procedure does not alter the
display.

Sets the %-y pixel coordinate for the place element of the
curser. An application can set the cursor te any
character position in the field., The display is
unchanged,

Makes the cursor visible and sets the cursor blink count,
Erases the cursor from the display without affecting its
position in the field or in the window coordinates, and
sets the blink count.

Waits for an interrupt signifying that a key has been
pressed. If np keys are pressed for a certain tiame
interval, the function blinks the cursor, and then resumes
waiting for a key to he pressed, If a key is pressed,
then the function returns the character.

This all-purpose routine inserts values into the field’'s
character string, performs various key functions, and
updates both the display and the cursor.

Inserts a character in the field at the cursor’'s current
ctharacter position, and verifies its insertion by
returning True or False., It does npt redraw the display
onh the screen. Most applications should cail FldEditField
instead.

Erases the given field and then redisplays the field's
text string. Call it when you need to display initial
values or redraw the updated value of a single field,

This procedure accomodates multi-lipe fields with
word-wrapping, but does not word wrap the last line of the
field.

Draws the field's text string without erasing the field
tirst. This procedure accomodates multi-line fields with
word-wrapping, but does not word wrap the last line of the
field.

Performs an exclusive OR pperation with a field's screen
display to change a character position to inverse-video.
Draws an outline box around the field.

Draws a one-pixel dashed outline box around the field,
leaving a one-pixel space from the field boundary.
Examines the terxt of a FieldDescriptor and determines
where the tent should appear on each line of a multi-line
tield.

Fields 10-5

é

S

CHAPTER 113 TABLES

Commpn Code includes routines to initialize, edit, and display tables of
fields, which contain string values. Tables are collections of tields
gathered together as a matrix. They are convenient for displaying large
amounts of numerical data or for putting text into a tabular fornmat,

Tables consist of editable fields, though the fields could be modified to
become display-only in order to protect the field contents. Each field in a
table is called a cell.

Tables are easier to use than individwal +ields. The Common Code has defined
procedures for moving from cell to cell, and for contrelling the cell that is

to be edited. Automatic scrolling has been developed for tables, and several

cell functions have been defined to operate upon selections of cells.

CONSTANTS

The constant, nowhere (= 65535), is a possible value of anchor (below) to show
that a selection has not been anchored.

These constants have Boolean values:

rditableFieid True
nonEditablefField False
allocTexrt True
dont&llocText False
dizposeText True

dontDisposeText False

Tables 15-1

DATA STRUCTURES

Figure 1i-1, "Cell Table Pointer Structure,” shows how the following data (:i:
structures are related to one another.

CellTable
"textCursor” .)
"Field", Fiald Fointer
"peg® Cone, and onld ong Field
= From the cursor: Descriptor
"sorean! M
[] Lal
..... ’ £] r3
Acreen Array vy i |
Screer el efefeie] Field Pointer |
Colunn.—p ; Field
Fointers i Descriptor
Field "Bow" def'n: x,u,extent
e " . b I!?" n . ll? - .
Pointars u:d{::tle choice String | String S
Pointer | o * ot L i
[4.43 riet IR
To reference the st character [11 [55535)
ofF call table [4,41: "ehaps"
table.screen [41°[4]1° tent” .chars[l] arrau of chatacters
Figure 11-1, Cell Table Pointer Structure (i:

+ TYPE ColArray = ARRAY [1..2048] DF FieldPtr;

Each element of the ColArray points to a field pointer (and ultimately to a
field and its value). Effectively, each column array is a column of a table,
and elements of the coluan array refer to successive rows of the table. The
tourth element of a ColArray would refer to the fourth row of the specified
column in a table. The field pointers on the "successive rows" lead
eventually to the values of the fields. The value 2048 is a dumay value --
the table package includes variable allocation routines as well.

TYPE ColPtr = “ColArray;

Points to a column array, and effectively to a column of the table of field
values,

% YYPE BcreenArray = ARRAY [1..2048] OF ColPtr;

Each element of a ScreenArray points to a ColArray, so the third element of a
screen array would refer to the third column of a table.

@

11-2 Common Code Reference

* TYPE ScreenPtr = ~Screenfrray;

A screen pointer refers to the screen arrasy of a CellTable, i.e., to the table
structure containing & matrix of fields.

TYPE Cellld = RECORD col,row: Integer END;

The Cellld allows application programs to reference fields in a
two-dimensional table., The Celllds in a CellTable structure are independent
of window scrolling,

%# TYPE SelectionRangeKind =
{celiRange, textRange, rowRange, colRange);

SelectionRangekind specifies whether the selection comprises the text within a
cell, a group of cells, or several rows or columns of celils.

¥ TYPE TableSelection = RECORD
cell: Cellld;
pos: Word;
rangeKind: SelectionRangeKind;
END;:

The TableBelection structure contains an anchor selectipn, along with the kind
of selection range., If rangeKind = textRange, then TableSelection.pos
contains the anchoring character position within the text of one cell, If
rangekind is any of the other ranges, then TableSelection.cell contains the
Cellld of the anchoring cell.

Tables §1-3

TYPE CellTable =
RECORD
colPerScreen,rowPerScreen: Integer; C
screen: ScreenPtr; >
movingCell, currentCell, scrollCell 1 Cellld;
visibleRect: Rectangle;
constraint, visible:
RECORD
top, left, hottom, right: Integer;
END;
textCursor: Cursor;
editMode: {(normal, commandl;
commandChar: Char;
rangeKind: SelectionRangeKindj
whichParameter: 0..10;
hilightKinds {noHilight, dim, bright, splitHilight);
gap: Point;
anchor: TableSelection;
sourcefnchor, sourceCurrent: TableSelection;
commands: Keysy
hilightOn, verticalGrid, horizontalbrid,
frame, bottomFrame, rightframe: Booleanj
headingRows: Integery
headingCals: Integer;
END;

The CellTable contains the information needed to keep track of a table of
fields (cells), their cursor, and other display parameters such as
highlighting, anchoring, and editing/command modes., Cellld’'s begin at 1,!
unlike the screen and window pixel coordinates, Figure 11-21 shows the layout
of fields within a cell table.

11-4 Common Code Reference

Wwindow!@,02

vizibleRect toplLeft. x
9

tolPerScreen
rowPerScreen

sCreen

movingCell

currentCell

scrolicCell

The frame =swrounding the
YizibleRect., The frame lies
r outzide the UisibieRect.

§&*f:ms¢emnmmﬁ;mmmwmmmmmmmm
T P Pl :

% L——* oap.x=1 pixel
Py BEach box
represents a field.

Sez Figure 16-1,

aap.u=l pixel

Figure 11-2, Fields in a Cell Table

Designate the number of columns and rows of fields that
exist in a particular CellTable. These can be specified
when initializing a CellTable, After they have been
initialized, they can be changed using TblAddCol and
TblAddRow. Only change theam using these calls, however,
because the dispose routines use them to determine how much
memory to deallocate.

A pointer to a screen array (and from there to a coluan
array, then to a field designator, and finally to a field's
text string),

Useful in applications which require & second inverted
outline to move while the ordinary outline remains in plare.
In selections, the anchor.cell outline remains at the anchor
position, while the currentCell and movingCell move to make
the cell selection.

In the worksheet editor, the movingCell outline can be
manipulated to generate cell references while the
currentCell outline stays in place.

The Cellld of the cell which currently contains the cursor.
This is a read only value., If you want to change the
location of the cursor, use TblSetCurrentCell.

The absolute Cellld of the top left cell in the CellTable
displayed on the screen. In easy rase scrolling, it is
always (1,1). Inm difficult case scrolling, it is the
visible top left cell, not the logical top left (the Cellld
of the logical top left cell is (1,1))., For example, after

Tables 11-5

visibleRect

constraint

visible

textCursor
editMode

conmandChar
rangeKind

whichParameter

hilightKind

gap

anchor
sourcefAnchor
sourceCurrent

commands

hilightOn

verticalbBrid
horizontalGrid
frame

bottomFrame

scrolling, scrollCell could equal {5,7) -- meaning that the
absplute address of the top left cell on the display screen
is (5,7).

A clipping rectangle defined in pixels based on the window
size. It displays all or part of the cells defined to be
"vicible" (see belpw). The visibleRect is initialized to
the rectangle between toplLeftMargin (an input to
TblInitTable) and windowExtent.

Defines the cells that the cursor can move inta., It must be
a rectangular area, defined in Cellld coordinates.
Specifies a rectangular area of all cells that are fully or
partially visible on the display screen. It is defined in
terms of Celllds, not pixel coordinates, The visibleRect
clipping rectangle can clip these visible cells.

A cursor assotiated with this CellTable's field values., It
consiste of the cursor defined in the field paclkage.
Indicates whether a normal {text input) mode or a coamand
mode is in effect.

A character used to store command mode characters.
Indicates which type of range has been selected, whether
text within a cell or a group, row, or column of cells.
Indicates the parameter the command requires the user to
input next, If a command needs its third parameter, then
whichParameter = 3.

Registers the type of highlighting, either none, bright,
dim, or splitHilight, The splitHilight kind allows two cell
outlines on the display at once, a bright outline and a dim
one. Roth should appear when the currentCell breaks away
from the movingCell.

The » and y pixel gap between fields in the table.

Consists of a rangeKind, a Cellld, and a character position
within a cell, so that anchoring may be based on groups of
entire cells or on character positions within a cell.

In commands that require two selection areas, it contains
the top left position of the first selection.

In commands that require two selection areas, it contains
the bottom right position of the first selection.

et of Keys. The keynames in this set define the selection
crommand keys that operate with a particular cell table.
These correspond only to the commands that require a
highlighted selection of text or cells.

Specifies whether the highlighting appears on the display.
Highlighting includes the cursor, the cell outline, the
split outline, the "additional” outlines (if any}, and the
inverse video highlighting for selections.

Controls whether vertical lines are drawn to separate the
fields. .

Determines whether horizental lines are drawn to separate
the fields.

petermines whether a one-pixel frame is drawn outside the
visibleRect.

Determines whether a one-pixel frame is drawn beneath the

11-4 Common Code Reference

rightFrame

headingRows

headingCol=

last row of cells., 1t appears only when the last row of
tells is displayed on the screen.

Determines whether a cne-pixel frame is drawn beside the
last (rightmost) column of cells. It appears only when the
last column of cells is displayed on the screen,

fin integer representing the number of rows, starting from
the top of the table {(not just the visible part of it) that
can be displayed but inte which the cursor and cell cutline
cannot move.

An integer representing the number of columns, starting from
the left of the tahle, that can be displayed but into which
the cursor and cell outline cannot move. {Forms have
headingCols = 1.}

TYPE TahleCommandResult = (tableCommandFrocessed,

ourobouraos);

The result specifies whether the command was successfully processed, or
whether it tried unsuccessfully to write over its own operands in the table

{the "ourobouros"

result)., (The ourcbouros is a mythic symbol of infinity, a

snake eating its own tail.)

Tables 11-7

TABLE ROUTINES

The paragraphs that follow summarize the routines available to work with
tables. Complete descriptions of each of the routines are provided in the =
alphabetically ordered Chapter 2.

Allocating and Disposing Tables

The routines that

TblInitTable

ThlDisposeTable

ThlAddCol

ThlNewScreen

TblDisposeScreen

ThlPisposeCol

Editing Tables

follow allocate, initialize, and dispose of tables,

Initializes and formats the CellTahle it receives as an
argument. Every cell within the initialized CellTable will
be identical, with a uniform number of characters and lines
in a field,

Disposes of the specified cell table pointers and
descriptors. You can specify whether it should dispose of
the values of the fields in the table or retain then.
Appends another coluan to the CellTable matrix., The
appended columns may have a different field width
{characters per line) from the columns of the table being
appended.

Returns a pointer value to a screen array with the given
nunber of columns, colCount.

Deallocates screen arrays that have been created by
ThiNewScreen. The number of columns to be disposed of must
equal the nuaber of columns that were allocated when the
screen array was created,

Deallocates column arrays that have been created by (::
ThlNewCol. The number of rows to be disposed of must equal
the number that were allocated when the column array was
created.

The following routines are used to change the contents of a table and to allow
movement of the field outline around the table.

ThlEditTable

ThlChangeFields

Specifying Cells

This all-purpose table routine inserts characters at the
current field location and tursor position, performs
various key functions, and redraws both the display and
the curser.

Given a table and a movement character, moves the field
outline from cell to cell., (It moves the cursor, too, if
the cursor actually was in the currentCell.)

The rouwtines that follow simplify working with a cell or group of cells within

C

i1-8 Common Code Reference

a table,.

ThiSetCurrentCe

TblFieldOfCelll

TblFindBounds

TbiFieid0fCrplRo

ThlEqualCells
TblCel l0BnScreen

Drawing a Table

The routines th
Application Not
call TblDrawTab
and to outline
will update and

redraw the tabl
anyl.

TblDrawTable

ThlDrawbrid

ThlUpdateRect

ThlSetVisible

11 Sets CellTable.currentfell to the given column and row Of
the celliTable. This routine will change the position of
the cursor and the highlighted cell. The display will
change only when another procedure redraws the table,

. however,

d Converts a Cellld into a FieldPtr reference, which makes
table values easier to refer to and to change., It is
wseful when working with cell variables of type Cellld,
such as currentCell.

Calculates which cells lie within a rectangle that has been
defined 1n the pixel coordinates of the display window.
Given an area on the screen, it allows you to update only a
portion of the table,.

" Biven a column and and a row of a cell table, it returns
the pointer to the field.

Returns True if the given Cellld’s are equal.
Returns whether the cell is within CellTable.visible, i.e.,
whether it is to be displayed.

at follow are used to actually display tables.

e; To draw a newly initialized table, your application must

le (to draw the fields) and ThlHilightTable (to draw the cursor
the cursor’s cell), Later, ThlEditTable and TbiChangeFields
redisplay the table when the application modifies it; they

e, the cursor, the cell outline, and the range selection (if

Clears all fields from the screen and redisplays thems with
their current values, by calling FldDrawField for every field
in the table, It overwrites the entire area defined by the
visibleRect.

Draws a frame around the visibleRect and grid lines between the
fields of a table, if table.frame, table.verticalBrid, and
table.horizontalbrid are True. If a variable is False,
TblDrawbrid does not draw the graphics associated with it. It
does not redraw the fields of the table. The frame and grid
lines are one pixel wide.

Updates the cells that lie within a rectangle defining a
paortion of the display window. Given an area on the screen,
it allows you to update only a portion of the table. It is
useful for redrawing the table after a message, a aepu, or a
form has been displayed.

Adjusts table.visible and table.constraint so that they lie
within the table.visibleRect clipping rectangle. The procedure
adjusts the top, bottom, left, and right of table.constraint as

Tables 11-9

well, Constraint is based upon the number of entire cells that
¢sh fit within visibleRect, ThlSetVisible does not allow
constraint to contain cells that appear only partially on the
screen., This restriction ensures that the cursor and cell
gutline can move into entire cells only.

INVERTING A TABLE

The following routines are used to invert (display in reverse video) specified
parts of a table.

ThllnvertRange Inverts the current selection range, either a range of cells or
a range of text within a single field. A range is a
rectangular span of cells that has been selected by the user.
Nothing will happen if the procedure is called and no range has
been selected.

ThbllnvertSpan Given a span of cells, it inverts the displayed cell of each
field within the span. Spans are rectangular areas defined by
column and row parameters, TbllnvertSpan will invert the
additional selections when a user scrolls during a selection,

Highlighting a Table or Cell

The following routines are used to invert and highlight specified parts of a
table.

NOTE: Call ThlHilightTable and TblUnhighlightTable whenever moving from a
table to a menu and back or when moving back and forth between windows.,

TblHilightTable Draws the cursor in the curreniCell, inverts any selected
range of cells, and highlights all cells in the table that
require highlighting.

TblUnhilightTable Given a cell table, it erases the cursor, uninverts any
range of selected cells, and removes the highlighting froa
any highlighted cells. The curser is erased graphically
only, so you must reset it elsewhere with ThlSetfursor.

TblHilightCell Given a CellTable and a Cellld, it draws the appropriate
outline around a cell, based on the value of hilightKind,

TblDimHilightCell Draws a dashed outline around a cell.

gerolling

The table routines supports two types of scrolling, the easy case and the
difficult case. The next version of this manual will provide up to date
examples of how to program these two cases.

ThlScroll The easy case: It scrolls the view of the table in the
direction indicated by ch (left arrow, right arrow, up

11-10 Common Code Reference

TbiGetSelectedCell Ids

TblScrollAdjustCellld

Coordinating Text and

The following routine
Erase to simplify hig

Thl5tartSelection

ThblConfirmSelection

TblEscapelode

arrow, or down arrow), and updates the display. It also
updates visible and constraint so that they match the
displayed area.

The difficult case: locates the movingCell and anchor
Celllds, rearranges them in ascending order, adjusts
them from relative "unscrolled” Celllds to absclute
"scrolled” Celllds, and returns them as “"first" and
"last” absolute (logical) coordinates,

The difficult case: transferms an "unscrolled" Ceilld
that is relative to the display screen into an absolute
"scrolled" Cellld.

Cell Selectjons

5 are used in conjuntion with commands =uch as Move and
hlighting and confirmation of selected areas of a table.

Putzs the table into command mode and sets
table,commandChar to ch., It works the same as if the ch
character had been included in the set of keys (in
table.commands) passed to TblinitTable, and then
ThlEditTable was called later with that character. In
both cases, highlighting of selections is enabled.

Used to save the source selection range for commands that
require two selection ranges, such as Move and Duplicate.
The table code will leave the source selection
highlighted while the user selects a destination range.
Puts the table into the normal {(mpon-command) state,
un~inverts any cell or text selection ranges, but leaves
the cursor and the highlighted cell on.

Tables t1-11

=

CHAPTER 12, COMMON CODE PROCEDURES AND FUNCTIONS

This chapter lists all of the preocedures and functions provided by Common Code
in alphabetical order. For discussions of concepts and interactions of these
talls, refer to the appropriate chapter earlier in this manual. This chapter
simply lists the calls in alphabetical order and provides a comprehensive
description of each call for marimum ease-of-use for reference purposes.

Procedures and Functions 12-1

AppendAnyChar

PROCEDURE AppendAnyChar (VAR str: StringPtr; ch: Charl; (::

Purpose and Operation
This procedure appends a single character to the tail of the string:

str = str + ch
If the string would exceed its max length when the character was appended,
then AppendAnyChar allocates a new string with a greater max length, copies
str into it, and appends ch to it. It disposes of the original str and sets
str to the newly created string.

AppendChar

PROCETIRE AppendChar{dest: SBtringPtr; ch: Charl;

Purpose and Operation
This procedure appends a single character to the tail of the dest string:
dest := dest + ch
However, if the dest string would exceed its max length when the character nas<::
appended, then AppendChar will not append it, and it will not return an error
message either.
AppendString
PROCEDURE AppendString{dest, source : StringPtr);
Purpose and Operation

AppendString concatenates the spurce string to the tail of the dest string,
Iike so;

dest := dest + spurce
The source string remains unchanged. If the append operation would make dest

too long (overflowing its max length), then the source string will be
truncated to #it the available space.

12-2 CommonCode Reference

AppendString

:") PROCEDURE AppendString(dest, source : StringPtr);

S

Purpose and Operation

AppendString concatenates the scurce string to the tail of the dest string,
like so3

dest := dest + source
The source string remains unchanged, If the append operation would make dest

too long (overflowing its max length), then the source string will be
truncated to fit the available space.

a..x../:

Procedures and Functions 12-3

Author0fThisFile

FUNCTION AuthorOfThisFile(conn: Word;
VAR authorProductCode: Wordj
VAR versionOfThisFile: Byte;
VAR error: Integer }: AuthorType;

Purpose and Operation

Given the connection number of a file, this function, on return, provides the
product code and version number from the file’'s authorID record. The function
also returns an indication of whether the file is in the new (3,0) format, old
{2.0) format, or in neither format,

Parameters
authorProductCode The product code identifying the application that created
this data file.

versionDfThisFile A byte (from the authorID record) specifying compatibility
level of the data file.

12-4 CommonCode Reference

CmdErase

FROCEDURE CmdErase {(conn : Word;
msg ¢t MessagePtr;
VAR error : Hord);

Purpose and Operation

This procedure displays the prompt "Confirm to erase file". If the user
confirms the prompt, the routine erases the file specified by the connection
number (conn) while displaying the message "Erasing file". When the file has
been erased, the message "File erased” is displayed., If any key other than
CODE-RETURN ic pressed after the "Confirm to erase file" prompt, the message
"No files erased” is displayed and no file is erased.

Parameters
conn The connection number of the file to be erased.
msg A pointer to your message area.

Procedures and Functions 12-5

CmdMedialsage

PROCEDURE CmdMediaUsage (pathMName : StringPtr; (ij:
initialUsage : Longlnt;
msg : messagePtr;
VAR refresh : Rectangle;
VAR error : Hord);

Purpose and Operation

This procedure implements the Usase (CODE-U) command that is supported in all
GRiD applications. It displays the current usage of system memory and storage
devices, and also the name of the current data file in the format shown below:

Deuvice

Subject connoncade
Title ConmandPrace
Kind Tent

Bubble Hemory 219 In Use 168 Free
Hard [tislk 4R35 In Use 402 Free
Floppy Disi: Not Read
Systen: 166 Hpplication: &7 Data: T Free 24
Heaae o i 1600s of charactersy

Parameters (::

pathnrame The pathname of the current data file.

initialUsage The Long Integer returned by MsglnitialUsage which indicates
the initial RAM usage before the data file was loaded into
memory. (Msglnitiallisage should he called when you are
initializing your application.)

msg A pointer to the your message area.

refresh A Rectangle that, on return, indicates what portion of the
screen needs to be updated by the application,

12-4 CommonCode Reference

CmdProperties

::j> PROCEDURE CmdProperties (pathName : StringPtrj
msg : MessagePir;
VAR refresh : Rectangle;
VAR error : Word);

Purpose and QOperation

This procedure displays the properties (characteristics) of the file specified
by the pathname parameter. It should be called when the user has selected
"Show file characteristics” from the Transfer menu and has specified the
desired file by confirming the resultant File form. An example of the
resultant display is shown below:

Dey ice Hard Disk

Subject connoncode

Title AboutThisBook

Kind Test

Hersion 0.0.9

Length 1728

Created Tuesday 208-Feb-84 3:5% pn
Hodified Tuesday 28-Feb-8¢ 3:55 pnm

Parameters

pathname A pointer to the pathname of the file whose characteristics are to
be displayed.

msg A pointer to the your message area.

refresh A Rectangle that, on return, indicates what portion of the screen
needs to be updated by the application.

Procedures and Functions 12=7

CompareBytes

FUNCTION ComparePytes (VAR sourcel, socurceZ: Bytes;
count: Word; =

VAR index: Word): Boolean;

Purpose and Operation

Compares one memory area with another one to see whether they match. They
must be the same length.

Parameters
sourcel
source?

count

index

Returns

A pointer to the first location of the data.
A pointer to the second location of the data.

The number of bytes to compare. This routine compares bytes in
sourcel to an equal number of bytes in scurce2.

An index into the source's memory area, it indicates the first
position in the first memory area where the two memory areas did
NOT match. If the two memory areas are identical, then index =
FFFF, This value is returned by refererce.

NOTE: the index starts at 0 (not 1} in order to be cospatible
with PL/M. Hence, index = 0 represents the first position in

the memory area. (::

CompareBytes returns a Boolean indicating whether or not the two memory areas

matched.

14 CompareBytes returns True, then the two areas matched exactly.

I¥ CompareBytes returns False, then the index variable contains the first
character position where the two areas did not match (all character pesitions
before it did match).

12-8 CoamonCode Reference

S

T

CompareStrings

FUNCTIDON CompareStringsistri,str2: StringPtr): Comparison;

Purpose and Operation

The function compares the ASCII values of two strings character by character,
from left to right, Thus the greater string will be the one containing the
first character with a higher ASCII] value. If two strings match up exactly
except that one string has additional characters, then the string with the
extra characters will be the greater one.

NOTE: This routine does NOT discriminate between uppercase and lowercase. The
string 'a red cat ran’ is greater tnon ‘A Red Cat’.

Procedures and Functions 12-9

Concatlits

FUNCTION ConcatLits{VAR lit!l, 1it2: Bytes): StringPtr; (:fﬁ
A

Purpose and Operation

The function will create a new string with the literals litl and 1it2
concatenated together. 1t allows you to concatenate string constants. The
len and max of the created string is the sum of the lengths of the two
literals.

Example

CONST x = "In progress ';
MsgString := ConcatbLits('Find: *, %)}

MsgString®chars now equals 'Find: In progress’

ConcatSetrings

FUNCTION ConcatStrings(stri,str2:StringPtr): StringPtr;

Furpecse and Operation C

The function will create a new string containing str! and str2 concatenated
together. The len and max of the created string is the sum of the current
lengths of the two strings (not the sum of their max lengths). It disposes of
stri and str2 after creating the new string.

12-10 Commonlode Reference

O

R

CopyOrString
FUNETION Copy0fString{str: StringPtr}: StringPtr;
Purpose and Operation

This function creates a new string and copies the value of str to it. The len
and max of the new string are both equal to the len of str.

NOTE: some Common Code routines deallocate the strings they receive as

arguments. If you don't want to have certain strings deallocated by thea,
make a copy of the string with this procedure.

CopyString
PROCEDURE CopyString(source, dest: StringPtr);
Purpose and Operation
This procedure copies the value of the source string to the dest string. Both

source and dest must be allocated already. If the source string is lenger
than the dest string, then any extra characters will be truncated.

Procedures and Functions 12-11

DataFormContirned

FUNCTION DataformConfirmed (VAR dataForm : DataFormType;
dataFormMode : DataForaModeType;
msgStatus : MessagePtr;
msg : StringPtr;

VAR rect : Rectangle;
keyProcess : WORD;
VAR ch : CHAR) : BOOLEAN;

Purpose and Operation

This function displays the specified form and, when confirmed, returns with
the choices the user selected for each item on the form. The function handles
display of the form and responds to arrow keys to move the selection outline
from choice to choice. The appearance of the form, definition of item types,
and the choices that will be displayed must be defined in a FLM data
structure. Refer to Chapter B for a description of the PLM data structure and
the data types used with the form.

Paramaters

dataForm The form’'s PLM data structure.

dataFormMode This is an enumerated type: "normalDataForm" initializes and
displays the form, "initOnlyDataForm" just initializes the form,
“runbnlyDataForm” displays an initialized fora.

msgStatus The MessagePtr you use for all activity with messages. [If any
messages are currently visible then the form will be displayed
above thenm.

msg A pointer to the string to be displayed as the prompt for the
form. 1f some messages are already displayed this one will be
stacked upon the others. Passing "NIL" for this parameter causes
no additional messages to be displayed, This stringPtr is
automatically deallocated,

Note: This string is actually displayed as a prompt. You must
call MsgClearPrompt to remove it,

rect This rectangle defines what part of your window the form will be
displayed in. Common Code will update this rectangle to reflect
what part of the window was actually used. It will not include
the area used by any messages,

keyProcess This is the cursor process ID. Common Code requires this for
menus, forms, and tables. It must be initialized with
"FieldStartKeys" prior to use,

ch This CHAR returns the key that was pressed last. You should look
at this value only if the form was not confirmed.

12-12 CommonCode Reference

DataMenulConfirmed

£

Parameters
dataMenu

msgStatus

Mmsg

rect

leyProcess

selection
ch

FUNCTION DataMenuConfirmed (dataMenu : DataMenuType;

msgStatus : MessagePtr;
msg : StringPtr;

VAR rect : Rectangle;
keyProcess : WORD;

VAR selection : INTEGER;

VAR ch : CHAR) : BODLEAN;

The menv (the name of the second data item defined in the PLM
module).

The MessagePtr you use for all activity with messapes. If any
messages are currently visible then the menu will be displayed
above them.

A pointer to the string to be displayed as the prompt for the
menu. If some messages are already displayed this one will be
stacked upon the others., Passing "NIL" for this parameter causes
no additional messages to be displayed. This stringPtr is
automatically deallocated,

Mote: This string is actually displayed as a prompt. You must
call MsgClearPrompt te remove it.

This rectangle defines what part of your window the menu will be
displayed in., Coammon Code will update this rectangle to refiect
what part of the window was actually used. It will not include
the area used by any messages.

This is the cursor process ID. Common Code requires this for
menus, forms, and tables, It must be imnitialized with
*fieldStartKeys" prior to use.

This Integer returns which item was selected on the amenu,

This CHAR returns the key that was pressed last. You should look
at this value only if the menu was not confirmed.

Procedures and Functions 12-13

DeleteBytes

PROCEDURE DeleteBytes (VAR source, dest: Bytesy
sourceLen, pos, byteCount: Word)y o

Purpose and Operation

This procedure deletes a given number of bytes from an area of memory; the
remaining bytes are moved together to close up the resulting gap. This
procedure is useful for removing elements from arrays, structures, strings,

stc.

Source and dest can refer to the same area of wmemory or to different areas.

Parameters

sopurce A pointer to an area of memory. DeleteBytes copies source into
dest, removing a specified number of bytes, as shown below.

dest A pointer to the resulting area of memory that contains the source

area without the deleted bytes.
sourcelen The length of the source area, in bytes.

pos The position within the source area where DeleteBytes begins
deleting bytes,

byteCount The number of bytes to be deleted, C

DeleteFromString
PROCEDURE DeleteFromString(str: StringPtr;
firstPos, lastPos: Integer);
Purpose and Operation
This procedure deletes characters from the string, starting at firstPos and

ending at lastPos. The routine then joins the remaining characters together
to close the gap. The max value of the string is unchanged.

12-14 CommonCode Reference

EqualStrings
FUNCTION EqualStrings{stri,str2: StringPtr):Boolean;
Purpose and Operation

The routine compares two strings character by character and returns True if
they have the same characters and the same number of charatcters.

MOTE: This routine does NOT discriminate between uppercase and lowercase. The
string "GRiD’ is equal to 'grid’.

ExactCopyOoOrstring
FUNCTION ExactCopyOfString f(oldStr : StringPtr) : StringPtr;
Purpose and Operation
This function makes an exact copy of a specified string and returns a
stringPtr to the copy. The exact copy will have .len set to the current .len
(as opposed to .max) of the specified string. This function is often used in
conjunction with data driven forms to obtain a copy of editable string choices
which would otherwise be when the form is disposed of.
Parameters
oldS5tr A pointer to the string that is to be copied.

Function Return

A pointer to the new string created by the copy operation.

Procedures and Functions 12-15

Il

FFExecuteCommand

FUNCTIDN FFExecuteCommand (filename: StringPtr) : WORD; (:?\
y

Purpose and Operation

When the File form is confirmed and the user has specified a "Next action” of
"Get new file and its application”, the function FFExecuteCommand is used to
get the new application and file. This function requires only the file name
tas returned by the FileFormConfirmed function) as its input. It passes this
$ile name to the system Executive which retrieves the appropriate application
to work with that file. For example, if you pass a file name with a Kind of
~“Text™ to FFExecuteCommand, the Executive looks for an application program
with a Xind of “Run Text™ and loads that program and the specified text file
into memory.

The calling program must check for an error return of "ok" from the function
and then do an OsExit. The system Executive will not load the new application
program and the specified file inte memory until the current process has
erited.

Parameters

fileName A string pointer to the name of the file as returned by the
FileFormConfirmed function.

Function Return (::

The function will return an error such as "File not found" if it cannot locate
an application that matches the specified file's kind. If an appropriate
application is found, the function returns "ok",

12-14 CommonCode Reference

D)

- >
e

FileFormConTtTirmed

FUNCTION FileFormConfirmed (FFMode: FFModeType;

userPiD: WORD;
VAR ch: CHAR;
VAR formRect: Rectangle;
prompt: StringPtr;
VAR pathName: StringPtr;
spare: StringPtr;
VAR defaultRec: FFDefaultTypeRec;
attachMode: BOOLEAN;
mode $BYTE;
access: BYTE;
VAR connection: WORD;
ExchangeMode: FFExchangeMode;
VAR ExchangeResult: FFExchangeResult;
VAR SaveResult: FFSaveResult) : Boolean;

Purpose and Operation

This function displays the File form, handles movement of the selection
outline when the user presses the arrow keys, and returns with the selected
items when the form is confirmed. The function also displays appropriate
messages and prompts. The items that will be displayed in the form can be
varied according to conditions established when the function is called. For a
thorough discussion of the capabilities of this function, refer to Chapter 8.

Parameters

FFMode

userPID
ch

formRect

proapt

pathName

spare

defaul tRec

attachMode

An FFGet or FFPut. Usually set to FFGet except for "Write to a
file", Determines which message will be displiayed with the
form.
The process ID of your keyboard process. Used by the function
to read keystrokes.,
The last keystroke typed. You should need to look at this
character only when the form is not confirmed.
This rectangle defines what part of your window the form will
be displayed in. Returns the rectangle that your application
should refresh,

A pointer to the string to be displayed as the prompt for
the form, This stringPtr is automatically deallocated,
The pathName parts that the function should display if defaults
are specified in the defaultRec. On return, it indicates the
actual pathName that the user confirmed.
Not currently used. Pass NIL to this parameter to enusre
compatibility with future uses,
Defines which part{s) of the pathName parameter should be
displayed initially in the form and which parts should be
initially blank.
Species whether the indicated file should be attached. You'll
usually want to attach the file except for such operations as

Procedures and Functions 12-17

fileMode

access

connection
exchangeMode

ExchangeResult

SaveResult

"Show file characteristics”,

The file mode for the attach such as update, old, new. (See
OsAttach in the GRiD-05 Reference for a discussion of these
modes,)

The access mode for the attach such as read only, write orly,
update {read/write). ({(See OsAttach in the GBRiD-0S Reference
for & discussion of these modes.)

The connectien number of the attached file returned by the
function.

Specifies whether to display the "Next action” {exchange)
and/or "Save changes" items on the form.

On entry, speciifies which of the "Next action" choices should
be in the selection outline, on return contains the choice that
was confirmed.

On entry, specifies which of the "Save changes" choices should
be in the selection outline, on return contains the choice that
was confirmed.

12-18 CommonCode Reference

e

&

FinalizePropertieslength

PROCEDURE FinalizePropertiesLength(conn: Word;
VAR error: Integer);

Purpose and Operation

This procedure takes the current File Position (Longlnt) and writes that value
to the file's header when the file is written to a device. The procedure does
not, itself, know the length of common properties, You should call this
procedure immediately after you have written the last of your common
properties records, After calling this procedure, you can begin writing data
records and application properties records.,

Parameters

conn The connection number specifying the data file whose properties
records length are being finalized.

Procedures and Functions 12-19

FindByte

FUNCTION FindByte(VAR source: Bytesj
ByteToFind: Char;
count: Word;
VAR indext: Word): Boolean;

Purpose and Operation

This function searches an array of bytes in memory for a given character, and
returns its position in the array.

Paransters

source . A pointer to the location of the data to be examined.

ByteToFind The character or byte to be compared with the memory area.

count The length of the memory area, in bytes.

index An index into the source’'s memory area, it indicates the
position in the area where the memory and the character matched,
This value is returned by reference,
NDOTE: the index starts at 0 (not 1) in order to be compatible
with PL/M. Hence, index = 0 represents the first position in
the memory area.

Returns

FindByte returns a Boolean indicating whether or not the byte was found in the
memory area, If FindByte returns True, then the index variable contains the
character position where the match was successful,

12-20 CommonCode Reference

C

FldDimHilightField

PROCEDURE FldDimHilightField(VAR field: FieldDescriptor);

Purpose and Dperation

This procedure draws a one-pixel dashed outiine box around the field, leaving
a one-pixel space from the field boundary.

FldDrawCursaor

PROCEDURE FidDrawCursor (VAR cur: CursorDescriptor};

Purpose and Operation

This procedure makes the cursor visible and sets cur.on to True. It alsop sets
the cursor blink count,

Procedures and Functions 12-21

FldDrawField
PROCEDURE FldDrawField(VAR field: FieldDescriptor); (::ﬁ
Purpose and Operation 2

This procedure erases the given field and then redisplays the field’s text
string. It clips the cursor and text to the field’'s rectangle -- when the
field is full, any extra characters don't overwrite the adjacent cells, Call
it when you need to display initial values or redraw the updated value of a
single field. This procedure accomodates sulti-line fields with
word-wrapping, but does not word wrap the last line of the field.

1§ the fieldKind is numeric, then the field receives additional formatting.

1§ a number is too wide to fit in the field's display area, then FidDrawField
truncates any additional fractional digits without rounding. If the integer
portion of the number is too large, then it displays asterisks in the field to
indicate overflow. The actual contents of the field are not changed, however.

FlIdDrawFleldCharsx

PROCEDURE FldbrawFieldChars(VAR field: FieldDescriptor);

Purpose and Operation

Draws the field’'s text string without erasing the field first. It clips the
cursor and text to the field's rectangle -- when the field is full, any extra (:::
characters don't overwrite the adiacent cells. This procedure accosodates
multi-line fields with word-wrapping, but does not word wrap the last line of

the field.

If you're redrawing many fields at once, it's faster to erase many fields at
the same time, instead of erasing them individually, as FldDrawField does.
The faster way is to erase with WinEraseWindow or WinEraseRectangle, and then
redraw the fields with FldDrawFieldChars.

12-22 CommonCode Reference

)

FldEdIitField

FUNCTION F1dEditField(VAR cur: CursorDescriptor;
ch: Word): FieldEditResult;

Purpose and Operation

This all-purpose routine inserts values into the field’'s character string,
perfarms various key functions, and updates both the display and the cursor.,
1t recognizes BACKSPACE, CODE-BACKSPACE (erase previous word),
SHIFT-CarriageReturn, and arrow keys. Pressing the RETURN key enters both a
Carriage Return (CR)} and Line Feed (LF). To enter only a CR, press CTRL-M.

Returns

ffter attempting to insert a character or perform a function, the procedure
returns one of these values: (See Caution below.)

ok The procedure successfully processed a character, such as an
arrow key, but did not change the contents of the field.

processed The procedure processed a character that changed the field's
contents. This includes inserting, modifying, or deleting text
characters in the field,

escaped The user pressed ESC, and nothing was done to the contents of
the field.
ignored The procedure received a character that it did not know how to

process. By testing for this result, you returns bufferfull.
That is, if no text string has been allocated for a field, then
that field‘'s text buffer cannot accept text and therefore will
appear to be full,

fieldFull Though the text string has room for more characters, the
additional character would have been displayed outside the field
boundaries. This result restricts fields to their own
boundaries, and prevents them from overwriting other fields.

If you want to pass a character of type Char to this routine, use the
following example code. In the exampie, cursor is of type CursorDescriptor,
oneCh is of type Char, and result is of type FieldEditResult:

result 3= FldEditField{cursor, Ord{oreCh));
I1f the user types a number that is too large to fit in a numeric field, the
field now fills up with asterisks. Erasing part of the number or enlarging

the field cavses the asterisks to disappear.

The FieldEditResult of fieldFull can now be used to support multiline fields.
The fieldFull result means that there was enough room in the field’'s text

Protedures and Functions 12-23

buffer to hold the new character, but not all the characters in the field can

be displayed. {(The character is inserted into the field anyway. The

characters that are not shown are at the end of the buffer.) To display the

hidden characters by changing the f#ield into a multiline field, the progranm (:::
can change the size of the field’'s box and redraw it.

There are two ways to generate a fieldFull result,

o Fill up the field with text. The first character that cannot be
displayed will cause a fieldFull result.

o Type SHIFT-RETURN on the last line of a field. After inserting the
SHIFT-RETURN character intp the field, FieldEditField returns
fieldFull.

By checking for the fieldFull condition, the application program can then add
another line of vertical space to the field. To add space to a single field,
change the size of its box and redraw it.

Pressing the RETURN key by itself only inserts a Carriage Return - Line Feed
pair into the field. You must press SHIFT-RETURN to begin a new line of a
$ield. This distinction is necessary to maintain compatability with Compass
Computer interchange files. SHIFT-RETURN enables you to define multiple lines
in a field, which can then be combined as a single Compass file record.

CAUTIDN
FldEditField currently does not produce a FieldEditResult of "processed”;
it returns the "ok® result under the conditions described for "ok" and
*processed”. It currently does not produce a FieldEditResult of (::
*pscaped”; it returns the "ignored" result under the conditions described
tor "ignored” and "escaped". (The “processed” and "escaped' values are
still legal values for FieldEditResult. They are not currently returned
as values.)

12-24 CommcnCode Reference

FIdEraseCursor

PROCEDURE FldEraseCursor (VAR cur: CursorDescriptor);

Purpose and Operation

This procedure erases the cursor from the display without affecting its
position in the field or in the window coordinates, and sets the blink count.

Procedures and Functions 12-25

FldFormatiine

FUNCTION FldFormatiine (VAR field: FieldDescriptory
charIndex: Word; (jw
VAR limPos: Word; >

VAR 1eftEdge: Integer): Boolean;

Purpose and Operation

FidFormatlLine examines the text of a FieldDescriptor and determines where the
text should appear on each line of a multi-~line field. It does not display
the field, however.

It performs word-wrapping automatically: if a word is too long to fit on a
line, FidFormatLine does not include it in that line. The last line of the
field is not word-wrapped, however. Note that all characters in a field are
displayed, including spaces, If a space occurs in the field, it may be
displayed as the first character of a line; that line will appear indented by
a space.

This functien, alsp interprets RETURN and SHIFT-RETURN separately.
FidFormatLine formats Carriage Return and Line Feed characters just as it does
any other characters, by inserting them into the line. If FldFormatlLine
encounters a SHIFT-RETURN character when formatting the line, it ends the line
with that character.

FParaneters

It takes these parameter variables: C

field The FieldDescriptor of the field being formatted.

charIndex fin index into the field’'s text string. It shows which character
in the text string will become the first character of a line in
the field., For example, if you call FidFormatlLine three times
with charlIndex = 1, 6, and {1, then the three formatted lines in
the field would begin with the first, sixth, and eleventh
characters respectively from the text string.

limPos An index into the field’'s text string that shows which character
in the text string will begin the NEXT line. This variable is an
DUTPUT from FidFormatLine.

leftEdge The position of the left edge of the text, measured in pixels
from the left boundary of the window. In conjunction with
FieldDescriptor.box, it controls the alignment of text within the
cell.

Returns

C

12-26 CommonCode Reference

The output of FldFormatline is a Beolean. If it is True, then the current
formatted line contains the last of the text from the text string, If it is
False, then there is still more text left in the teat string to be formatted.

Example

To format a multi=line field, the application will need to call FldFormatLine
repeatedly. The limPos that FldFormatLine calculates becomes the new
charindex when FldFormatLine is called again:

FldFormatlLine { , charlndex, limPos, }
= |

FidFarmatLine { , charlndex, limPos,)

FldFormatline ¢ , charlndex, limPos, }
The limPos variable is an output representing where the next line should

start. When you call the procedure again, the old limPos should now become
charInder, which shows where the current line begins.

Procedures and Functions 12-27

FldWilightField

PROCEDURE F1dHilightField(VAR field: FieldDescriptor); (:ﬁ\
4

Purpose and Operation

This procedure draws an outline box around the field. The line of the box's
outline is three pixels wide, and it lies one pixel away from the field's
puter boundary. The cursor's three-pixel outline is generated automatically.

FldInsertInField

FUNCTION FidinsertInField (VAR cur: CursorDescriptor;
ch: Char): Boolean;

Purpose and Oparation
This function inserts a character in the field at the cursor's current
character position, and verifies its insertion by returning True or False, It

does not redraw the display on the screen, Most applicatiens should call
FldEditField instead.

FldInvertChar
PROCEDURE FldInvertChar{fields FieldPtrj pos: Word);
Purpose and Oparation (::

This routine performs an exclusive OR operation with a field's screen display
to change a character position to inverse-video.

12-28 ComnmonCode Reference

o

FldReadKey

FUNCTION FidReadKey (VAR cursor: CursorDescriptor): Word;

FidReadKey replaces two routines, ConKeyPressed and ConCharln, that were used
to busy-wait for input from the keyboard. Instead, this procedure leaves the
processor free for other tasks while waiting for a key to be pressed.

The function waits for an interrupt signifying that a key has been pressed.
If no keys are pressed for a certain time interval, the function blinks the
cursor, and then resumes waiting for a key to be pressed. ({Your application
program will wait at the statement containing this function call,) If a key
is pressed, then the function returns the character, and your application
program can continue,

Note: Call FldStartKeys once when you initialize your program, before calling
this function. When your program finishes, call OsDeleteProcess to delete the
cursor process.

Status bits from the keyboard are returned in the high order byte of the word.
The high-order byte of the word is defined as follows:

Bit fAbbreviation Meaning
8 1BF =} if character available
9 OBF =1 if latest coammand
has not been processed

10 {not used) {rot used)

11 (not used) {not used)

12 RPT =1 if a repeated character
13 SHFT =} if a shifted character
i4 CODE =1 if a code character

15 CTRL =1 if a control character

Use the example code below to ignore the status byte in your programs. 1In it,
ch is of type Char, and cursor is of type CursorDescriptor.

ch := Chr(FldReadKey(cursor}));

Procedures and Functions 12-29

FldSetCursor

PROCEDURE FldSetCursor (VAR cur: CursorDescriptor;
field: FieldPtr); (:::
Purpose and Operation

This procedure sets thes cursor to the given field, at the last character
position and sets Cur.on to False. The procedure does not alter the display.

FilidSetPosx
PROCEDURE FldSetPos{VAR cur: CurénrDescriptur; pos: Integer);
Purpose and Operation
Given the character position of the cursor, it sets the x-y pixel coordinate
for the place element of the cursor. An application can set the cursor to any

character position in the field. The display is unchanged. Cur.on is set to
False,

FldStartKeys
PROCEDURE FldStartKeys (VAR cursor: CursorDescriptor)j
FldStartKeys starts a process to control the cursor. It puts the PiD of the (:::

process into cursor.keyProcess., (You use it to “initialize®” the cursor, in
effect.)

12-30 CosmonCode Reference

FontCount
FUNCTION FontCount: Integerg

Purpose and Operation

This function returns an integer which indicates how many fonts are available
in the system. Most applications will not need to use this function since, if
they have the name of a foat, they can directly obtain the index number bof
that font and need not scan through the list of fonts. However, if an
application (for example GRiDManager! needs to maintain its own list of fonts,
FontCount may be useful.

FontGetN
FUNCTIBN FontGeiN (name: StringPtr): Integer;
Purpose and Operation
Given a pointer to the font name, this function returns an integer {(index)
that is associated with the current font. This value can then be used to

correctly position the choice field highlight when an application displays a
data driven form.

FontNthName
FUNCTION FontNthName(index: Integer): StringPtr;
Purpase and Operation

Given the font index number, this function returns a pointer to the string
containing the name of a font. ({(If the index value is not in the list of
fonts, the function returns NIL.) This furction can thus be used by an
application to obtain the name of the current font associated with a data
file. The application could then, for example, write the name of that font to
the common properties record of the file.

Procedures and Functions 12-31

FontSetName
PROCEDURE FontSetName(name: StringPtr; VAR error: Word)j
Purpose and Operation

This procedure causes the font specified by the name parameter to be loaded
into memory. This font thus becomes the current font.

FPossible Errors

All disk errors.,
Out of =memory.

FontSetNth
PROCEDURE FontSetNth(index: Integer; VAR error: Wordlj
Purpose and Operation

This procedure causes the font specified by the index parameter to be loaded
into memory. This font thus becomes the current font.

Possible Errors

a1l disk errors.
Out of memory.

12-32 CommonCode Reference

FreeString

PROCEDURE FreeString{(VYAR str: StringPtr);

Purpose and Operation

Biven the StringPtr to a string, FreeString will release the memory that the
string occupied and return that memory to the PASCAL heap.

Note: you must NEVER modify S5tring”.max, because Freebtring uses that nuamber
to determine how much memery to release to the heap. Other data values may be
incorrectly released if String”.max is changed from its original value.

FreeStringslInDatafForm

PROCEDURE FreeStringsinDataForm (VAR dataForm : DataFormType);

Purpose and Operation
This procedure frees all the strings in a data form. It should be used only
if you do NOT store the values of a form in the form itself. If you store the

values of & form in permanent variables, you can call this procedure after you
have copied current form values into the variables.

Paraseters

dataForm The form whose strings are to be freed.

Procedures and Functions 12=-33

CetNextRecord

FUNCYION GetNextRecord {(conn: Word;
VAR gRecord: GeneralRecordPointer; (:::
VAR gRecordlLength: Wordj
thisisTheAuthorCalling: Booleanj
- YAR error: Integer): Boolean}

Purpose anpd Operation

Given a file’'s connection number, this function returns with a pointer to the
next record from the data file and the length of that record. If you have
specified that you are the author of this file, all records, including
application (private) properties, will be retrieved using this call. If you
have specified that you are not the author, application properties records are
automatically skipped and only common properties records and data records will
be retrieved. The procedure updates the current file position pointer so that
it is pointing just beyound the end of the record just returned.

Parameters

conn The connection number for the file whnse records are
being read.

gRecord A pointer to the beginning of the next record from

the data file. The procedure allocates a new record

if gRecord is NIL or if the current length of the

record is shorter than the next record in the file.

{The format of GeneralRecord is shown below.)
thisIsTheAuthorCalling A Boolean that, if set true, permits all records in (::

the data file to be read. 1If set false, the

function automatically skips application properties

records and returns only common properties records

and data records.

GeneralRecord = RECORD

headerByte: Byte;

CASE Integer OF
OFFh: (textString: ARRAY [1..2) OF Char); { ends with CRLF }
OFEh: (commonProps: CommonPropertiesRecord);
OFDh: { userbength: Word; userProps: ARRAY [1..1) OF Byte);
000h: (length: #Word; binaryProps: Byte)

END;

GeneralRecordPointer = ~BeneralRecord;

Function Return

The procedure returns a Boolean that is True if the first byte of the recoerd
contains FE hex {(a common properties record) or FD hex (an applications
properties record). The Boolean will be True for application properties

records only if you are the author of the file (thisIsThefuthorCalling set
True}.

12-34 CommonCode Reference

GetVersionString

FUNCTION GetVersionString (pID : Word) : StringPtr;
Purpose and Operation

This function returns a pointer to the string tontaining the version nuaber
and message for the file identified by the pID parameter., GRiD applications
use this function to obtain their own version number for display when the
application is first initialized and when the user presses CBDE-?.

Parameters

pld process ID for the current application. (Use OsWhofml to obtain your
own piD.)

Returns

A pointer to a string containing a three numeral version number in the
following format:

‘Version x.y.z°’
where x, y, and z are integers in the range [0..255]. Applications may assign
significance to %, y, and 2. If the scftware has not had the version set in

the file descriptor by the version program, the string returned will be:

‘Version 0.0.0°

Procedures and Functions 12-35

InsertBytes
PROCEDURE InsertBytes (VAR source, dest: Bytes;
len, pos, byteCount: HWord);
Purpose and Oparatien
This procedure inserts bytes into a specified area of memory. The contents of
the inserted bytes are undefined. This procedure is useful for inserting new

elements into arrays, structures, strings, etc.

Source and dest can refer to the same area of memory or to different areas.

Faraseters

sopurce A pointer to an area of memory. InsertBytes copies source into
dest, inserting a specified number of bytes, as shown below.

dest A pointer to the resulting area of memory containing the source
area and the inserted bytes.

ien The length of the source area, in bytes.
pos The position within the source area where the insertion begins.

byteCount The nusmber nf bytes to be inserted.

12-36 CommonCode Reference

6
s

InsertCharlInString
FUNCTION InsertCharInString(ch: Chary
str: StringPtr;
pos: Integeri: Boolean;

Purpose and Operation

This function inserts a single character into a string. It inserts ch into
str beginning at the character position given by pos,

If inserting the ch would make str longer than its max length, then
InsertinString returns False, and nothing is inserted.
InsertInString

FUNCTION InsertInString(piece, str: StringPtr;
pos: Integer): Boolean;

Purpose and Operation

This function inserts a string into another string. It inserts piece into str
beginning at the character position given by pos. The existing characters of
str are moved aside to make room for the insertion.

If inserting the piece would make str longer than its max length, then
InsertinString returns False, and nothing is inserted.

IntegerToString
FUNCTION IntegerToStringlint: Integer): StringPtr;
Purpose and Operation

IntegerToString converts an integer between -3274B and 32747 inclusive into a
string, then returns a stringPtr to the string value.

Procedures and Functions 12-37

MoveBytes

PROCEDURE MoveBytes(VAR source: Bytes;

VAR dest: Bytes; length: YWord};

Purpose and Operation

MoveRytes moves data from one location in memory to another.

Parameters

source

dest

length

A pointer to the location of the data to be moved (i.e., to the
first element of an array of bytesl.

A pointer to the new destination of the moved data {i.e., to an
element of an array of bytes).

Specifies how many bytes are to be moved, from 0 to 653335,

MoveReverseByteaes

PROCEDURE MoveReverseBytes (VAR scurce: Bytes;

VAR dest: Bytes; length: Hord)j

Purpose and Operation

MoveReverseBytes moves data from one location in memory to another. It moves
the data starting from the end of the data rather than the beginning, as shown
in the figure below., This allows you to move bytes into a destination that
overlaps the source location.

Paraseters

source

dest

length

A pointer to the location of the data to be moved (i.e., to the
first element of an array of bytes).

A pointer to the new destination of the moved data (i.e., to an
element of an array of bytes)., ({Note that this is the first element
of the destination, not the last.)

Specifies how many bytes are to be moved, from 0 to 65533.

12-38 CommonCode Reference

MsgClearMessage
FUNETION MsgCliearMessage(msg : MessagePtr) : Boolean
Purpose and Qperation

Erases any messages currently displayed. This does not erase prompts.
Visible prompts are not affected by this function,

It the return value of the function is true, the application must update the
rectangle in the window indicated by msg*.rect,

MsgClearPrompt
FUNCTIDN MsgClearPrompt{msg : MessagePtr) : Boolean

Purpose and Dperation

Erases any prompts currently displayed. Messages that have prompts stacked on
them are also erased by this function, otherwise messages are not affected by
this function.

If the retern value of the function is true, the application must update the
rectangle in the window indicated by msg*.rect.

Procedures and Functions 12-39

MsgExIt¢

PROCEDURE MsgExit(code : Word; msg ¢ MessagePtr)

Purpose and Operation

This function is used before exiting an application. The code parameter will
dictate which message will be displayed:

code tlessage
0 Retrieving subjects: In progress
2 Out of memory

Confirm to exit
other System Error: lerror codel
Confirm to reinitialize system

If the system is ready to continue {(code 0 or 2}, MsgExit will call OsExit(0),
otherwise it will rebpot, Note that this procedure is actually a combination
of message and prompts according to the guidelines layed down in Chapter 6.
Code 0 simply displays a message and exits, ignoring anything the user may do
at the keyboard. Codes 2 will automatically exit on CONFIRM but should
remain in the application if any other key is pressed. Any "other" code
indicates a catastrophic event and the exit will be performed on CONFIRM; any
other key might leave the user in the application -- GRiD applications,
n however, typically exit regardless of what key is pressed at this point.
(Here's your hat. There's the door.)

i 12-40 CommonCode Reference

©

MsglInit

FUNCTION Msglnit : MessagePtr

Purpose and Operation

This function dynamically allocates a MessageStatus record and returns a
pointer to it. All necessary fields of the record are initialized, including
the location of the message. The bex field in type FieldDescriptor is
initialized to the bottom of the current window. This is the default position
ot all single message/prompts and the point at which stacking begins,

Each message or prompt you use must have a MessageStatus record. Therefore
you must call this function before calling the functions which actually
display the message or prompt.

The organization of the MessageStatus record is as follows:

TYPE MessageStatus =
RECORD
messageShowing: Poolean;
stackSize : Byte;
field: FieldPtr;

rect: Rectangle; {area to he updated?
anythingShowing : Roolean;
END;

MessagePtr = “MessageStatus;

messageShowing A boolean that indicates if a message is currently
displayed. If a prompt is showing, or if no message is
showing, it is false. This field is NOT altered by the
application, It is initialized by MsgInit and updated by
the various message calls.

stackSize Indicates the number of messages/prompts currently showing.
This is NOT altered by the application. It is initialized
by MsgInit and updated by the various message calls.

field Pointer to the field descriptor record containing the text
and location of the message.
rect The rectangle that the application should update if the

boolean result of one of the message FUNCTION calls is true.
This value is initialized by MsgInit, updated by the various
message calls, and read by the applications. It is not
altered by the applications.

anythingShowing Boolean field that is not used in the current version of the
Common Code message wmodule,

The organization of the field descriptor record pointed to by the field
parameter is as follows:

FieldDescriptor = REEORD

Procedures and Functions 12-41

box: Rectangle;

text:s StringPtr;

kind: FieldKind;
END;

FieldPtr = ~“FieldDescriptor;

FieldDescriptor =
RECORD
box: Rectangle;
text: StringPtr;
kind: FieldKind;
END;

FieldPtr = ~“FieldDescriptor;

{2-42 CommonCode Reference

MsglInitialllisage
ﬁ FUNCTION MsginitialUsage: Longint;
Purpose and Dperaticn

When initializing .your application, call MsglnitiallUsage to find the amount of
memory taken by the application code itself, without the user’'s workspace.

MsgShowDecoded
FUNCTION MsgShowDecoded(msg : MessagePtr; errorCode : Integer) : Boplean
Purpose and Dperation
MsgShowDecoded takes an integer corresponding to an error message defined by
the GRiD Operating System. It finds the text message corresponding to the
error code, and dispiays it as a one line message. It erases any previous
messages or prompts. It freezes the keyboard for two seconds, ignoring any

input during that tinme.

If the return value of the function is true, the application must update the
rectangle in the window indicated by msg*.rect.

For 2 list of error codes and their corresponding messages, see Appendix B of
the GRiD-05 Reference Manual.

Procedures and Functions 12-43

MsgShowError
FUNCTION MsgShowError{msg : MessagePtr; str : StringPtr} : Boolean

Purpose and Dperation
This function erases the previous message or prompt (stack), then displays the
given string as a one line message at the bottom of the window. Unlike the
other display routines, it freezes the keyboard input for two seconds. Any
tharacters entered during this period are ignored. The msg variable keeps
track of the status of the message. Mh:znShowError disposes of the strimg it

receives as input,

If the return value of the function is true, the application must update the
rectangle in the window indicated by msg*.rect.

Parameters

msg A pointer to the MessageStatus record for this message.
str A pointer to the message text that is to be displayed.

Function Return

& boolean that, if true, indicates that the application must update the
rectangie in the window indicated by m»sg*.rect.

12-44 CommonCode Reference

MsgShomwmMessage
{::) FUNCTION MsgbhowMessagei{msg : MessagePtr; str : StringPtr) : Boolean
Purpose and BGperation

This function erases the previous message or prompt stack before displaying
the given string as a one line prompt at the bottom of the window. The asp
variable keeps track of the status of the message. MsgShowMessage disposes of
the string it receives as input.

I+ the return value of the function is true, the applicatien must update the
rectangle in the window indicated by asg*.rect.

If the application changes the value of the box field of the FieldDescriptor
(presumably to change the default paosition of the message}, then all future
stacking of messages will be in reference to this new position,
MsgShowMessage only clears messages and prompts correctly if the default
{base) position of the box is the bottom of the window., I+ the application
alters the position of the box, it is responsible for clearing the messages
and prompts with their respective clear functions.

Parameters

msg A pointer to the MessageStatus record for this message.
str A pointer to the message text that is to be displayed.

Function Return

A boolean that, if true, indicates that the application must update the
rectangle in the window indicated by asg*.rect.

MsgShowPrompt

FUNCTION MsgShowPrompti{msg : MessagePtr; str : StringPtr) : Boolean

Purpose and Operation

This function erases the previous message(s) or promptis) before displaying
the given string as a one line prompt at the bottom of the window. The msg
variable keeps track of the status of the prompt, MsgShowPrompt disposes of
the string it receives as input,

It the return value of the function is true, the application must update the
rectangle in the window indicated by asg*.rect.

If the application changes the value of the hox field of the FieldDescriptor
{presumably to change the default positien of the prompt), then all future
stacking of messages will be in reference to this new position. MsgShowPrompt
only clears messages and prompts correctly if the default (base) position of
the box is the bottom of the window. 1If the application alters the position

Procedures and Functions 12-45

of the box, it is responsible for clearing the messages and prompts with their
respective clear functions,

g;

Parameters

msg A pointer tp the MessageBtatus record for this prompt.
str A pointer to-the prompt text that is to be displayed.

Functien Return

A boolean that, if true, indicates that the application must update the
rectangle in the window indicated by msg*.rect.

12-454 CommonCode Reference

MsgStackMessage
FUNCTIDN MsgStackMessage(msg ; MessagePtr; str : StringPtr) : Boolean
Purpose and Operation
This function stacks a message on top of currently displayed messages. The
®sg variable keeps track of the status of the message. MsgStackMessage

disposes of the string it receives as input.

If the return value of the function is true, the application must update the
rectangle in the window indicated by wsg*.rect,

Stacking a message on a prompt will first erase the prompt (stack of prompts)
and then display the message at the bottom of the window.

Parameters

msg A pointer to the MessageStatus record for this message.
str A pointer to the message text that is to be displayed.

Function Return

A boolean that, if true, indicates that the application must update the
rectangle in the window indicated by wmsg*.rect.

Procedures and Functions 12-47

MsgStackProapt
FUNCTIDN MsqStackPrompti{msg : MessagePtr; str : StringPtr) : Boolean
Purpose and Dperatieon
This function stacks a prompt on top of currently displayed messages Oor
prompts. The »sg variable keeps track of the status of the prompt.

MsgStackPrompt disposes of the string it receives as input,

If the return value of the function is true, the application must update the
rectangle in the window indicated by »sg*.rect.

Stacking a prompt on a message will place the prompt on top of the message,
The resulting prompt-message block is considered a prompt for future message
rules (See Chapter b1},

Parameters

msg A pointer to the MessageStatus record for this proapt.
str A pointer to the prompt text that is to be displayed.

Function Return

A boolean that, if true, indicates that the application must update the
rectangle in the window indicated by msg”.rect.

12-48 CommonCode Reference

O

O

=
4

NewString

FUNCTION NewString{maxlLength: Wordl: StringPtr;

Purpose and Operatien

NewString allocates memory for a new string of the given length and returns a
string pointer to that area in memory. The maxiength that is passed as a
parameter becomes the maximum length {max) of the new string, and the current
length (len) is initialized to zero. [If you try to refer to an element in the
string beyond strang*.charslmax] another variable’'s memory area may be
damaged.

CAUTION: ONLY MNewString and NewStringLit WILL PROPERLY ALLOCATE SPACE FOR
THESE STRINGS. NEVER call New{StringPtr) because New will allocate all 45335
bytes according to the declaration of String.charsl!..45535) above.

When declaring your own static variables to deal with strings, you must
declare them to be StringPtrs, NOT Strings. If you declare a static variable
as type String, the compiler will try to allocate 65535 bytes for
String.charsf}..65535]) according to the declaration of the String record. You
should declare the variable to be of type StringPtr and then assign it with
the value resulting from a call to NewString or NewStringlit.

NewStringtlLit

FUNCTION NewStringLit(VAR lit: Bytes): StringPtr;

Purpose and Operation

NewStringlit takes a literal string, allocates memory for it, and returns a
string pointer. The maximum length {(max)} and current length (len) of the new

string is the length of the literal characters,

NOTE: The last character of lit must be a DEL character (CODE-SHIFT-hyphen).
NewStringLit needs the DEL character to determine the length of the string.

Example
string ;= NewStringLit{ ' The resultcs areyg’);

The len and max of string are both 15. String®.chars is equal to 'The results
are’.,

Procedures and Functions 12-49

RealToString

FUNCTION Real¥oString(aReal: LongReal; {
fracDigits: Integer): StringPtir;

Purpose and Dperation

RealToString converts a fifteen digit real number into a string variable.

(The 8087 numeric processor uses fifteen and a half digits of precision; this
routine returns fifteen digits, rounding off the half digit as necessary.)
Note that this routine produces real numbers of fifteen and a half digits. It
cannot accomodate exponential notation, such as 6.03E+23, For details, see
the Intel 8087 Floating Point Processor Manual or the Pascal Manual.

The variable fracDigits determines how many digits after the decimal point
will be included in the string., Any extra digits beyond fracDigits will be
rounded, The maximum value for fracDigits is 16 places. Setting fracDigits
greater than 16 is not recommended. GSetting frachigits to -1 will cause the
routine to strip trailing zeros and to return only the significant digits of
the number. [If fracDigits is zero, then the real number is rounded to an
integer (without a decimal point) and cenverted to a string.

NOTE: If fracDigits = i5 and the integer portion of the number is greater than
zero, then some of the numerals to the right of the decimal will be incorrect.
For example:

0.123456789012345

1254,123456789012222 C

The first number is accurate, but the final four digits of the second number
("2222") are spurious.

e e e et i e e o e e L e i

Although this function takes a LongReal parameter, it can alsp convert numbers
of type Real and LongInt. Real numbers can be used as parameters directly,
i because Pascal converts them to LongReals automatically.

RealToString is the only function that can be used to convert LongInt numbers
to strings. (The Longlnt type is not compatible with the IntegerToString
function.) To convert a Longlnt number to a string:

VAR a: Longlnt;
b: LongReal;
b := aj
resultstring = RealToStringib,0);

12-50 CommonCode Reference

SetBytes

f"\) PROCEDURE SetBytes (value: Char;
o VAR dest: Bytes; count: Word);

Purpose and Dperation

This procedure seis every byte in the destination area to the same given
value,

Parameters

value The value that SetBytes will assign to every byte in the memory area.
dest A pointer to the destination area in aemory.

count The length of the destination area, in bytes.

SetPrerfix

PROCEDURE SetPrefix (subjectName: StringPtr);

Purpose and Operation

o, This is used by the application to set the prefix subject, ie.

% } if the current prefix is 'Hard disk'programs, then
) SetPrefix(NewStringlLit{ 'Incs ‘)) sets the prefix to
‘Hard disk'lIncs.
| \}
N

Procedures and Functions 12-51

SkipProperties

PROCEDURE (conn: Word; C
VAR error: Wordl;

Purpose and Operation

Given a connection number of a file, this procedure automatically skips over
all common properties records in a data file and moves the current file
position pointer. Thus, a subsequent OsRead or GetNextRecord call would begin
with the first record following the common properties,

StringOfFormltem
FUNCTION StringDfFormItem (VAR dataForm : DataForaType;
row ¢ INTEGER) 3 StringPtr;
Purpose and Operation
This function returns a stringPtr to the text actually displayed in a form

item. It can be used if you need to know the text of a choice selection as
ppposed to the number of the choice.

Parameters Qz:

dataForm The form containing the desired text.
row The row within the form containing the text of the desired choice
| selection.

Function Return

A stringPtr to the text of specified the choice selection.

12-92 CommonCode Reference

&

o’

StringTolInteger

FUNCTION StringTolnteger(str: StringPtr;
VAR converted: Boolean): Integer;

Purpose and Operation

This function converts a string value into an integer. The string must
represent an integer between -327468 and 32767 inclusive for the conversion to
succeed. The variable "converted” indicates whether the conversion was
successful or not.

StringToReal

FUNCTION StringToReal{str: StringPtr;
VAR converted: Boolean): LongReal;

Purpose and Operation

This function converts a string value into a real number. The variable
"converted" indicates whether the conversion was successful or not. It will
convert up to the first fifteen digits, and drop any extra digits without
causing an error. If the conversion fails (from incorrect input, for example)
the routine returns 0,

Note that this routine produces real numbers of fifteen and a half digits. It

cannot accomodate exponential notation, such as 4.03E+23. For details, see
the Intel BOB7 Floating Point Processor Manual or the Pascal Manual.

Procedures and Functions 12-33

SubProperty

FUNCTION SubProperty(Str : StringPtr; <::j
index : Integer) ; StringPtry

Purpose and Operation

Picks a name ouwt of a string made up of names and special characters. The
special characters are delimiters in the GRiD-05 file systenm.

Parameters
Str The string that usually.represents a pathname.
Index An index into the string that represents the

significance of the desired token.
Returns
A substring of Str that was contained between delimiters, The legal
delimiters are: *~,',!, and 0O,
Example
I+ Str = "WO0'Programs’'sample™text™ then
SubProperty(str, 1} returns WO’ v
SubPropertyistr, 4) returns ‘text’, :
If Str = sample™textiGRiDiRG then
SubProperty(str, 0) returns 'sample’

SubProperty(str, 2) returns 'GRiDiRG’
SubPropertyistr, 3} returns NIL.

12-54 CommonCode Reference

SubsStringlit

,/\) FUNCTION SubStringLit(VAR lit: Bytes;
- delim: Char;
count: Word): SBtringPtr;

Purpose and Operation

This function returns the Nth item (specified by count) from a literal
containing text separated by delim characters.

It's useful for constructing the ItemStr or ChoiceStr functional parameters as
defined for menus and forms., For creating menus and forms, no carriage
returns or line feeds should bhe embedded in the literal.

Paraneters

lit A popinter to a literal., All items should be concatenated
together into a single literal, with the items separated fronm
one another by delim characters. A delim character must follow
the last iten.

delinm The character that separates the items in the literal. It can
be the literal character surrounded by single quotes, such as

“or /', or it can be the ASCII value, as in CHR(127).

Most programmers use the DEL character as a delimiter —— ‘0° or
CHR{127). While DEL characters appear as a solid sgquare in the
text editor, they do not appear on printouts.

count An integer index to the substring of lit.

Returns

SubStringlLit returns a StringPtr pointing to a copy of the substring. The
substring does not include any DEL characters.

Example

If menuString = 'COPYREMOVE®DELETES'

1] 1
i 1 1

DEL characters
then SubStringlit(menuString, '#',!) returns a StringPtr containing ‘COPY’.
Other legal calls include:
CONST = = ‘a/b/c/’

VAR A [1..40] of Char;
substr: StringPtr;

Procedures and Functions 12-35

substr := SubStringlLit('ReadOWriteOAppendd’, '8°, 2};
substr := SubStringiitix, "/°, 2);

substr := SubStringlLit(string®.charsf{1], /', 2}
substr 3= SubStringbLit (A, CHR{137), 2);

12-56 CommonCode Reference

"

TblAddCol

PROCEDURE ThlAddCol (chPerLine,linesPerField: Integer;
VAR table: CellTable;
shouldAlloc : BRoolean;
editable: Boolean);

Purpose and Operation

This procedure appends another column to the CellTable matrix. The appended
columns may have a different field width {(characters per line) from the
columns of the table being appended. By appending columns of different
widths, you are not limited to tables of one width, such as the ones produced
by TblinitTable. The number of lines in each field should be the same,
however.

You can specify whether the procedure should allocate memory space for the
values of the appended fields or not. The appended fields can be editable or
non-editable, as well: ThlAddCol enables you to construct tables made up of
both editable and non-editable fields. For example, questionnaire templates
would include non-editable areas for the questions and editable areas for the
responses. When you add a column, the constraint is widened to include it.
It's best to modify the cursor’s constraint area after adding coluans.

Procedures and Functions 12-57

TblCellOnsScreen

FUNCTION TblCellOnScreen(YAR table: CellTable;
cell: Cellld):
Booleany

Purpose and Operation

This function returns whether the cell is within CellTable.visible, i.e.,
whether it is to be displayed. This routine has NO relation to
CeilTable.visibleRect, the table‘s clipping rectangle.

TbbilChangeFields

FUNCTIDN ThlChangeFields(VAR table: CellTable;
ch: Char): Boolean;

Purpose and Operation

This procedure, given a table and a movement character, moves the field
outline from cell to cell. (It moves the cursor, too, if the cursor actually
was in the currentCell.) Call it when EditTable returns a resuvlt of
outOfField, and include the same ch character that you called TblEditTable
with, TblChangeFields will return False if it is unable to move in the
indicated direction, meaning that scrolling is necessary.

12-58 CommonCode Reference

O

TbIConTtTirmSelection

PROCEDURE TblConfirmSelection (VAR table: CellTable};

Furpose and Operation

Call TblConfirmSelection to save the source selection range for commands that
require two selection ranges, such as Move and Duplicate. The table code will
leave the source selection highlighted while the user selects a destination

range.

1]

It performs these functions:

It copies the Celllds and cursor positions in table.textcursor,
table.anchor, and table.currentfell into table.sourceAnchor and
table.sourceCurrent. The sourcefAnchor and sourceCurrent Celllds are
"normalized” so that sourceAnchor is the top left cell of the
selection range, and sourceCurrent is the bottom right cell of the
range. Both cells are corrected for scrolling -~ table.scrollCell is
added to them., (This has the same result regardless of whether
scrolling is easy or difficult case.)

It sets {(table.anchor.pos} to nowhere, which will keep that value
until the user presses CODE-B to select a destination range later.

The variable table.whichParameter is set to 2, indicating that the
user must select another parameter (such as a character position or
Cellld) to complete the command.

TbobIDimHIilightCell

PROCEDURE ThlDimHilightCell (VAR table: CellTable;

cell: Cellld};

Purpose and Operatjion

This procedure draws a dashed outline around a cell.

Procedures and Functions 12-59

TbIDisposeScreen

PROCEDURE TblDisposeScreen{screen: ScreenPir;

Purpose and Operation

colCount: Integer);

TblDisposeScreen deallocates screen arrays that have been created by

TblNewScreen. The variable colCount represents the number of columns to be

disposed of; it must equal the number of columns that were allocated when the
screen arrE ThlDisposeCol{col: ColPtr; rowCount: Integer);

Purpose and Operation

The procedure deallocates column arrays that have been created by TblNewCol.

The number of rows (rowClount) to be disposed of must equal the

were allocated when the column array was created.

TbIlIDisposeTable

PROCEDURE ThlDisposeTable(VAR Tables CellTable;
shouldDispose: Boolean}:

Purpose and Operation

This procedure disposes of the specified cell table.

number that

It can dispose of the

values of the fields in the table or retain them, according to these values of

shouldDispose:

shouldDispose =

disposeText
{True)

dontDisposeText
{(False)

operation

dispose of the values of
the fields

keep the values of the
fields

When shouldDispose = dontDisposeText, the procedure disposes of the table
pointers and the field descriptors, but retains the values of each field.
might want to retain these values when other pointers need the values.

12-60 CommonCode Reference

You

©

TbOblIDrawGrid

PROCEDURE TblDrawBrid (VAR table: CellTable);

Purpose and Operation

Draws a frame around the visibleRect and grid lines between the fields of a
table, if table.frame, table.verticalGrid, and table.horizontalBrid are True.
If a variable is False, TblDrawGrid does not draw the graphics associated with
it. It does not redraw the fields of the table. The frame and grid lines are
one pixel wide.

TbhbIDrawTable

PROCEDURE TblDrawTable(VAR table: CellTable);
Purpose and Operation

The procedure clears all fields from the screen and redisplays thea with their
current values, by calling FldDrawField for every field in the table. It
overwrites the entire area defined by the visibleRect.

I+ table,verticalGrid and CellTable.horizontalGrid have been set to True, then
the routine will draw lines between the fields. If table.frame is True, then
it will draw a one-pixel frame outside table.visibleRect. (The frame is not
within the coordinates of table.visibleRect).

Application Note: To draw a newly initialized table, your application must
call ThlDrawTable (to draw the fields}) and ThlHilightTable (to draw the cursor
and to outline the cursor’s cell), Later, TblEditTabkle and TblChangeFields
will update and redisplay the table when the application modifies it; they
redraw the table, the cursor, the cell outline, and the range selection (if
anyl.

Procedures and Functions 12-41

TblEditTable

FUNCTION TblEditTable(VAR table: CellTable; e
ch: Word): FieldEditResulty

Purpose and Operation

This all-purpose table routine inserts characters at the current field
location and cursor pesition, performs various key functions, and redraws both
the display and the cursor. Call it once for every character read from the
keyboard. It does not redraw the entire table, but just the changed field.

The routine recognizes BACKSPACE, CODE-BACKSPACE {erase previous word),
RETURN, and arrow keys.

If the value of the ch character belongs to the set of CellTable.commandKeys,
the currentfell will be displayed in inverse video, and the selection
mechanism will be turned on. That is, when the user types a selection
command, the current cell is inverted to show that a selection has begun.

Returns

After attempting to insert a character or perform a function, TblEditTable
returns one of these values:

ok The procedure successfully processed a character, such as an
arrow key, but did not change the contents of the cell.

processed The procedure processed a character that changed the cell’'s (:3
contents, This includes inserting, modifying, or deleting text
characters in the cell, <{{DOES THIS HAPPEN YET? ALSD ESCAPED?
7/30 UPDATE SAYS NO>»>

escaped The user pressed ESC, and nothing was done to the contents of
the cell. Any selections are cleared, and the table leaves
command mode,

ignored The procedure received a character that it did not know how to
process. By testing for this result, you can allow terminal
empulation characters {(such as CTRL characters) to pass through
the application to another application or processor.

outDfField fin attempt was made to move the cursor out of the cell.
TblEditTable doesn’'t actually move the cursor out of the cell.
Call TblChangeFields to do so.

bufferFull The text string of the cell is full. It cannet contain any
additional characters.

Note: if the text pointer of a field descriptor is nil, then

ThlEditTable returns bufferFull as well. That is, if no text
string has been allocated for a cell, then that cell’'s text

12-62 CommonCode Reference

N

fieldFull

buffer cannot accept text and will therefore appear to be full.

The text buffer is not full, but not all the characters in the
cell can be displayed. The character is inserted into the cell
anyway., @ fieldFull result occurs when the user presses
SHIFT-RETURN or types enough text to fill the displayed area of
the «cell. By checking for the fieldFull condition, the
application can then add another line of vertical space to the
celi. (To keep scrolling and selection consistent, you must add
another line to every cell in the row using TblChangeRowHeight.)

Procedures and Functions 12-63

TblEqualCells
FUNCTION TblEqualCellsicelll,cell2: Cellld):Boolean;

Purpose and Operation

If the given Cellld’'s are equal, TblEqualCells returns True.

TblEscapeMaode

PROCEDURE TblEscapeMode (VAR table: CellTablel;

Purpose and Operation

This procedure puts the table into the normal (non-command) state, un-inverts
any cell or text selection ranges, but leaves the cursor and the highlighted

cell on.

12-64 CommonCode Reference

TblFieldOrCelllId

"'> FUNCTION TbiField0fCellid (VAR table: CellTable;
- cell: Cellld): FieldPtr;

Furpose and Operation

This function converts a Cellld inte a FieldPtr reference, which makes table
values easier to refer to and to change. It is useful when working with ceil

variabies of type Cellld, such as currentCell.

TblIFieldOrCaolRow

FUNCTION TblFieldOfColRow{(VAR table: CellTable;
col, row: Integer): FieldPtr;

Purpose and Operation

This procedure, given a column and and a row of a cell table, it returns the
pointer to the field. These two references return the same pointer value:

ThlFieldOfColRow(tablel, 1, 2)
tablel.screen*f11"~[2]

TblFindBounds
PROCEDURE TblFindBounds{VAR table: CellTable;
VAR rect: Rectangle;
VAR left, right,
top, bottom: Integer);
Purpose and Operation

Thies procedure calculates which cells lie within a rectangle that

has been

defined in the pixel coordinates of the display window. G6iven an area on the

screen, it allows you to update only a portion of the table.

Procedures and Functions 12-65

TbiGetSelectedlCelllds

PROCEDURE TblGetSelectedCelllIds(VAR table:CellTable;
VAR first, last; Cellld);

Purpose and fOperation

This subroutine is vsed for the "difficult case” of scrolling, It locates the
movingCell and anchor Celllds, rearranges them in ascending order, adjusts
them from relative "unscrolled” Cellilids to absolute “scrolled"” Celllds, and
returns them as "first® and “last” absolute (logical) coordinates.

When referring to a selection, call ThlGetSelectedCelllds instead of
referencing the anchor and movingCell directly. The movingCell could be
located either before or after the anchor, but the variables “first® and
"last" prevent any errors that could arise from this ambiguity.

12-66 CommonCode Reference

TblHilightCell

PROCEDURE ThlHilightCell (VAR table: CellTable;
cell: Cellld);

Purpose and Operation

This procedure, given a CellTable and a Cellld, it draws the appropriate
gutline around a cell, based on the value of hilightKind.

TbIHIIZightTable
PROCEDURE TblIHilightTable{VAR table: CellTable);
Purpose and Operation

This procedure draws the cursor in the currentCell, inverts any selected range
of cells, and highlights all ceills in the table that require highlighting.

NOTE: The variable table.hilightOn stores whether the highlighting is on or
off. You can call TblHilightTable repeatedly, and the table will remain
hilighted each time {(rather that inverting from highlighted to unhighlighted}.
Do NOT erase the window while the table thinks its highlight is on, however.

Procedures and Functions 12-47

TblIInitTable

PROCEDURE TbiInitTable{colPerScreen,rowPerfcreen, (:::
chPerLine,linesPerFieid: Integer;
topLeftMargin,
fieldGap: Point;
VAR table; CellTable;
shouldAlloc: Boolean;
editable; Ropoleans
commands: keys);

Purpose and Operation

ThlInitTable initializes and formats the CellTable it receives as an argument.
Every cell within the initialized CellTablie will be identical, with a uniforas
number of characters and lines in a field,

The procedure sets the current cell to column {, row 1 of the CellTable, and
initializes the cursor to that field, as well., It initializes the constraint
and visible areas to the bounds of the entire table, It sets
table.headingRows and table.headingCols bath to zero.

Parameters

ctolPerScreen The number of vertical columns per table.

rowPerScreen The number of rows per table,

chPerLine The maximum number of characters allowed in each line of a C::j
field.

linesPerField The maximum number of lines allowed in each field --

especially useful for producing multi-lipe fields,

topLeftMargin The top left margin of the top left cell., 1Its x component is
the horizontal distance in pixels from the left window bound
to the top left pixel position of the top left field., 1Its y
component is the vertical distance from the top window bound
tHown to the top left pixel position of the top left field.

fieldBap The distance in pixels between fields, as they are displayed
on the screen. The x component is the horizontal distance
between field boundaries; the v component is the vertical

distance.
table The CellTable to be initialized by this procedure.
shouldfAlloc # parameter to the procedure which specifies whether memory

space should be allocated for the field values. 1If¥
shouldAlloc = allocText, the procedure will allocate the
space; if shouldAlloc = dontAllocText, it sets the text
pointer to nil and doesn't allocate any space. [f you

e

12-48 CommonCode Reference

LY
(*’

editable

commands

allocate the text after you've initialized the table, be sure
to allocate strings with a maximum width no longer than the
width of the columns in the table (chPerline is the column
width).

A Boolean variable that determines whether or not all fields
in the table can be edited by the user., The fields are
allocated as editable or non-editable regardless of the value
of shouldAllec. You can modify the editable property ef any
individual field by changing
table.screen*fcoluanl”[rowl*.kind.editable.

The set of legal command Keys for this particular table.
Names for the Keys in the set can be found in the Keys.inc.

Procedures and Functions 12-69

TblInvertRange

PROCEDURE TblInvertRange(VAR table: CellTable); (::

Purpose and Operation

This procedure inverts the current selection range, either a range of cells or
a range of text within a single field. A range is a rectangular span of cells
that has been selected by the user, Nothing will happen if the procedure is
called and no range has been selected. (To see whether a range has been
selected, examine the variable table.anchor: if table.anchor.pos = nowhere,
then no range has been selected.)

TblInvertSpan

PROCEDURE ThbllInvertSpan(VAR table: CellTable;
coll, col2, rowl, row2: Integer);

Purpose and Operation
This procedure, given a span of cells, inverts the displayed cell of each
tfield within the span. GSpans are rectangular areas defined by column and row

parameters. ThllnvertSpan will invert the additional selections when a user
scrolls during a selection,

C

TbINewScreen
FUNCTION TblNewScreen(colCount: Integer): ScreenPtr;
Purpose and Operation

This function returns a pointer value to a screen array with the given number
of columns, colCount.

12-70 CommonCode Reference

@

TblScroll

PROCEDURE TblScroll (VAR table: CellVable; ch: Char);

Purpose and Operation

This procedure is used for the "easy case" and scrolls the view of the table
in the direction indicated by ch (left arrow, right arrow, up arrow, or down
arrow), and updates the display. It also updates visible and constraint so
that they match the displayed area. ThblScroll uses bitblt software for rapid
scrolling.

Procedures and Functions 12-71

TblScrollAdjustCellIlId
PROCEDURE TbiSecrollAdjustCellld (::
(VAR table; CellTable;
VAR unscrolled,
scrolled: Cellld);
Purpose and Operation

This routine transforms an "unscrolled" Celild that is relative to the display
screen into an absclute “"scrolled” Cellld, according to these formulas:

scrolled.col = unscrolled.col + {(scrollCell.col - §}
scrolled.row = unscrolled.row + (scrollCell.row -)

It returns the adjusted result in the variable "scrolled.”

Example

When scrollCell = [3,4]), the absolute Cellld of the top left cell in the table
display (screen”[13"[1]) is col = 3 and row = 4, TblScrollCell would map
unscrolled = [1,1Y into scrolled = (3,43,

TblSetCurrentlCell

PROCEDURE TblSetCurrentCell (VAR table:CellTable;

col, row: Integer};

This procedure sets CellTable.currentCel] to the given column and row of the
cellTable. This routine will change the position of the cursor and the
highlighted cell. The display will change only when another procedure redraws
the table, however.

Purpose and Operation

12-72 CommonCode Reference

O

TblSetVisible

PROCEDURE ThlSetVisible(VAR table:; CellTable);
Purpose and Operation

This procedure adjusts table,visible and table.constraint so that they lie
within the table.visibleRect clipping rectangle, Before you call
TblSetVisible, set table.visible.top and table.visible.left to the top left
Cellld that you want to be visible on the screen. (They are both initialized
to 1 by TblInitTable,) TbiSetVisible calculates the other values based upon
these twao,

When ThlSetVisible executes, it will adjust table.visible.right and
table.visible.bottom so that visibleRect is filled with cells or portions of
cells. Portions of cells can be visible, too; the cells are clipped at the
boundary of the visibleRect clipping rectangle.

The procedure adjusts the top, bottom, left, and right of table.constraint as
well. Constraint is based upon the number of entire cells that can fit within
visibleRect. TblSetVisible does not alloew constraint to contain cells that
appear only partially on the screen. This restriction ensures that the cursor
and cell outline can move into entire cells only.,

Note that if table.visible overlaps table.headingfols or table.headingRows,
the constraint area will be even smaller. Heading Coluans or Rows can be
visible, but the cursor and cell outliine cannot move intoc theam -- so the
constraint area must be correspondingly smaller.

TblStartSelection

PROCEDURE TblStartSelection(VAR table: CellTable; ch: Char);
Purpose and Operation

This procedure puts the table into command mode and sets tablie.commandChar to
th. It works the same as if the ch character had been included in the set of
keys (in table.commands) passed to TblInitTable, and then ThiEditTable was
ctalled later with that character. In both cases, highlighting of selections
is enabled,

Procedures and Functions 12-73

TblUnhililghtTable
PROCEDURE TblUnhilightTable(VAR table: EellTablel};
Purpose and Operation
This procedure, given a cell table, erases the cursor, uninverts any range of
selected cells, and removes the highlighting from any highlighted cells. The
cursor is erased graphically only, s5p0 you must reset it elsewhere with

TblSetCursor.

TblUnhilightTable also depenrds upon table.hilightOn for its status -- see the
note under ThlHilightTable,

TblUpdateRect

PROCEDURE TblUpdateRect (VAR table: CellTable;
VAR rect: Rectangle);

Purpose and Operation

This procedure updates the cells that lie within a rectangle defining a
portion of the display window. Given an area on the screen, it allows you ta
update only a portion of the table. It is useful for redrawing the table
after a message, a menu, or a form has been displayed.

12-74 CommonCode Reference

i B m 1~

@

O

T

TimeToString

FUNCTION TimeToString(format : Byte;

Purpose &nd Operation

epoch 3 TimeType) : StringPtr;

Converts time and &ate information from the 05 to a string for easy use in an

application.

Parameters

format Currently ignored; it will be used to arrange the
string information differently.

epoch Data that the 0S5 returns from the system clock.

TYPE TimeType =

Returns

The string is of the form: ‘20-Jan-B3 1{1:00 am'. Other forms may be

RECORD
year : WORD:
manth, day &+ BYTE;
hour, minute, second : BYTE;
tenth0fSec, dayOfWeek : BYTE;
dayOfYear : WORD;

END;

available at a later date.

Procedures and Functions

12-75

TranslateHeading

FUNETION TranslateHeading(inputStr : StringPtr;
width ' Integer;
pageNum : Integer) : StringPtr;

Purpose and Operation

This routine translates the input into a centered output string for printing
on an Epson printer. Special symbols are translated in the upper or lower
case. The output string will be no wider than the width parameter, regardless
of the number of symbels included or the length of the input string.

Special symbols: P (page number)
“D (date}
“T ftime)

ie, a call te TranslateHeading with parameters:

inputStr = "Some file name D AT ~P’
width = 40
pageNum = 5

will return a string looking like:

‘Some file name 3/09/B3 8:33 am 5

12-76¢ CommonCode Reference

UnDoDataForm

PROCEDURE UnDoDataForm (VAR dataForm : DataFormType;
(::) eraseDataForm : BOOLEAN);

Purpose and Operation

Thie procedure deallocates all the tables and internal structures associated
with a data driven form. It does not, however, free the strings in the form
(You must use FreeStringsInDataForm}., UnDoDataForm should always be called

after DataFormConfirmed.

Parameters -

dataForm The form whose tables and internal structures are to be
deallocated.

eraseDataForm This Boolean determines whether the form will be erased after
it has been confirmed. If set True, the form is erased: this
is the technique used by most GRiD applications., If special
circumstances dictate, you can leave a form displayed after it
has been confirmed by setting this parameter False.

Procedures and Functions 12-77

pperCase
FUNCTION UpperCaseich: Char): Charj O
Purpose and Operation

This function conwerts any lowercase alphabetic characters in the string to
uppercase. It does not shift up numerals, punctuation, or special characters.

12-78 CommonCode Reference

APPENDIX A:r INCLUDE FILES

Include files are tools for the development environment. The content of each
include file is a PUBLIC section of Pascal (or PLM) code that describes the
intertace to a corresponding Pascal (or PLM) module.

The structure of the files varies from that of the Pascal module for the sake
of symbol table space in the compiler. Constants and types are usually
included in one file, with functions and procedures in another. This allows
easy reference for types that are defined in terms of other constants
{parameters).

This structure makes the number of files necessary for successful compilation
larger, but it saves on symbol space if the total number of included symbols
is smaller in the end. This restriction on symbol space in the compiler has
been improved with the latest release of the Intel compiler. The present file
convention, however, will stand.

Lastly, the interface is purely for the use of the Pascal coapiler. It should
not be used as an External Reference Specification, or associated
documentation., MWriting programs that interface with external modules reguires
knowledge of the operations and their effects on the private data structures
of a module, Much like a programming language is an implementation of a
grammar, 50 include files are only a definition of an interface,

BEFDRE COMPILING

To use Common Code routines, your source code must refer to the Common Code
Include Files listed in Table A-1, This table lists all the include files for
the Common Code -- the files that contain declarations of data types,
functions, and procedures.

You include files with the FINCLUDE statement, as described in the PASCAL-B%
User ‘s Guide. The files must be avaiiable on-line during a compilation.

Include Files A-1

You do not have to include all of the files listed in Table A-l. Your socurce @
program generally needs to include only the procedures that it calls., For

example, an application that uses only the window graphice routines and the

string routines would include only WindowProcs.inc™Text™ and

StringProcs.inc™Text™, (It weould also need to include the data types defined

in StringTypes.inc*Text™ and WindowTvpes.inc Tent™,)

However, some packages refer to the data types defined 1n other packages. For
instance, the Menu/Form routines need the data types defined in several other
packages., Figure A-1 illustrates these dependencies. A package at one level
requires all the data types defined on the level below it. For example, a
program containing messages or prompts would require these include files:

MessageProcs.inc™Text™
MessageTypes.inc™Text®
FieldTypes,inc™Text"™
StringTypes.inc™Text™

f-2 Common Conde Reference

(F\} Routines

General
String

Field

Table

Data Driven Menu/Form

File Form
r"jj Menu/Form
h‘.
Common Properties

Commands

Message/Prompt

Byte Manipulation
Fonts

Table I-1.

N

Include File Names

Common,inc™Text™
Keys.inc*Text™
Hath.inc*Text™
StringTypes.inc*Text™
StringProcs.inc™Text"
RealStringProcs,inc™Text®

FieldTypes.,inc*Text™
FieldProcs.inc™Text™

TablelnitTypes.inc™Text™
TablelnitProcs.inc™Text™

TableEditTypes.inc*Text®
TableEditProcs.inc™Text™
DataForms.Inc*Text™

FileFormProcs.Inc™Text™
FileFormTypes.Inc*Text™

MenuFormTypes.inc™Text™
MenuFormProcs.inc™Text™

CommonPropsProcs. Inc*Text
CommonPropsTypes.Inc*Text

CommandProcs. Inc™Text™

MessageTypes.inc™Text®
MessageProcs.inc*Text™

ByteProcs.inc™Text"

FontProcs., Inc*Text™

fommon Code Include Files

Include Files

-3

[FileForaProcs Inc |
i {Dat.aForns.Inc |

[F ilaForn upes.Inc] ' c

{MeruForaTyupes . Inc | [TablelnitTupes .Ing|

1

H .
i i

[IableEditTgpés.Inc !

I nEssagefgpes s I nc J e ramrrae s 44 e L £ S0 KORRESE fra bR aResaRe IO TRLS

i]FcntPrncs.Inc]IannonProEsP[ggg,lngl

[H:mdc-uT i .Inc_l ----------------- ; i l';‘:u-lm:ml?rv:sE:= slupas.inc)
¢GRiD-0S%2 i

1
F T e LA

IStringISPes.Inc

Figure A-1, Include File Hierarchy

A-4 Common Code Reference

e

APPENDIX B, LISTINGS OF DATA DRIVEN MENU/FORM EXANPLES

This appendix lists the PLM and Pascal source modules and link command

statements (as they might be entered with the GRiDDevelop "Link" token) used
for the examples of data driven menus and forms described in Chapter 8. The
files and link command for the menu example appear first, followed by those

for the form example.

Data Briven Menu/Form Listings B-1

PLM MODULE FOR EXAMPLE "“MENU"

$COMPACT NOLIST
MenuPLH: DO;
$INCLUDE (‘w'lncs'PlalLits,Inc™Text™)

JRERTEEREREERFEH Samp]e MENU #FEERRENBEREERER]

DCL sampleMenuTemplate (%) BYTE PUBLIC DATA

{'Save this file“’',

"Exchange for another file“’,

‘Include a file™’',

‘Write.to a file*',

‘Append a file“ ",

‘Erase a file“’',

‘Show characteristics of a file™! ')

DCL theBampleMenu PTR PUBLIC DATA (@sampleMenuTemplate))

END;

B-2 Common Code Reference

T

SOURCE FILE FOR EXAMPLE PROGRAM

$NOLIST COMPACT

MODULE Maing

$INCLUDE (‘w0 Incs'Common. Inc™text™)
$INCLUDE ('w0'Incs'ConPas,Inc™text™)

$INCLUDE (*w0'Incs’'DataForms.Inc™text™)

$INCLUDE (‘w0 Incs FieldTypes.Iinc™text®)
$INCLUDE ('wQ'Incs FieldProcs,Inc™text™)

$INCLUDE ('w0'Incs’'MessageTypes.Inc™text™)
$INCLUDE ('w(Incs MessageProcs.Inc™text™)

$INCLUDE ('w0'lIncs StringTypes.Inc™text™)
$INCLUDE ('w0'Incs StringProcs.Inc™text™)

$INCLUDE ('wQ'Incs WindowTypes.inc™text™)
$INCLUDE (‘w0'Incs 'MWindowProcs.Inc™text™)

$INCLUDE {('w0'Incs'0OsPasTypes.Inc™text™)

PUBLIC MenuPLM;
VAR theSampleMenu: DataMenuType;

PROGRAM Main;

"MENU "

CONST
{ miscellaneous strings }
samnplelsg = 'Bample: 'j
selectMsg = ' Gelect item and confirm ';
VAR
windowRect: Rectangle;
cursor: CursorDescriptor;
msg: MessagePtr;
ch: CHAR;
{ ---
}

PROCEDURE InitDisplay;

VAR windowExtent: Point;

BEGIN
ConDefCsr (FALSE);
WinlnitDefaultWindow;
WinGetWindowExtent (windowExtent);
FldStartKeys (cursor};
mnsg 1= Msglnit;

WITH windowRect DO { entire window for use with menus and forms 3}

BEGIN

Data Driven Menu/Form Listings

B-3

topLeft.x := 0j
topteft.y := 0

extent t= windowExtent;
ENDy
END;
$EJ
{ ---
}

FROCEDURE SampleMenu;

VAR str: StringPtrj
rect; Rectangle;
itemSelected: INTEGER;
confirmed: BOOLEAN;

BEGIN
str t= ConcatLits (SampleMsg, SelectMsg)y
rect := windowRect;
confirmed := DataMenuConfirmed
{theSampleMenu,
msg,
str,
rect,

cursor.keyProcess,
itemSelected,

chl)s
IF confirmed THEN
BEGIN
CASE itemSelected OF
i: 3 (do appropriate action for ‘save’}
2y 3 (do appropriate action for “exchange’}
: ; f(do appropriate action for ‘include’}
: ;3 {do appropriate action for ‘write'}
: + {do appropriate action for ‘append’}
:+ 3 f{do approptiate action for ‘erase’}
7: ;3 {do approptiate action for ’‘erase’}
: ; {do approptiate action for ‘erase’}
DTHERWISE;
END;
END;
END;
T Tt ittt bbbt bt }
{ THIS IS THE BEGINNING OF THE PROGRAM
}
(m e e e e e e e e m e — e m e }
BEGIN
InitDisplay;
SampleMenu;
END

B-4 Common Code Reference

e

=

PLLM MODULE FOR EXAMPLE

$COMPACT NOLIST

ForaPL¥: DOD;

$INCLUDE ("w'Incs'PimLits.Inc™Text™)
FEERERRREREERERE Sample form EEERAREREREEEEE

DCL sampleFormItemCount LIT "7°;

/

"FORM"

DCL sampleForaRowSize LIT '98°; /% 14 times item count ¥/

DCL sampleFormLabelsAndChoices (%) BYTE DATA
{“#Editable numeric field“An integer™i’,

"?Choice only field“First choice“Second choice™!’,
*$Editable/choice field™A text string™A choice“i’,
‘.Editable real number field“A real number™i’,

‘¥Typeface™i’,
‘+Printer™i’,
‘=Plotter™i’);

BCL theSampleForm STRUCTURE
(form PTR,
numltems INTEGER,
labelsAndChoices PTR,
thoicelLines INTEGER,
rows (sampleForaRowSizel BYTE)

PUBLIC DATA

{nullPtr,
sampleForalteaCount,
@sampleFormLabelsAndChoices,
1);

END;

Data Driven Menu/Fore Listings

I#
X
FE
A]

foram
numltens
items
choicelines

%/
*
*/
*/

B-5

LINK COMMAND FOR EXAMPLE PROGBRAM "MENU"

ik

=
:Link Menu: 3
link "w'objs‘*Menu.PLM*Dbj™, "w'objs'Menu.Pas™0bj",
‘w'Libs‘CompactSysteaCalls™Lib™ TO Menu™Run™ NOPRINT Purge BIND Fastlpad
SS(STACK (+1000})

B-4 Common Code Reference

PASCAL LISTING FOR
$NOLIST COMPACT
MODULE Maing

$INCLUDE ('w0'Incs'Common.Inc™text™)
$INCLUPE ("w0'Incs'ConPas.Inc™text™)

$INCLUDE ('wQ'lIncs'FontProcs. Inc*text™
F$INCLUDE ('w0'Ints'Dataforms.Inc*text™

$INCLUDE {'wil'Incs'FieldTypes.Inc™text
$INCLUDE ('w0'lncs'FieldProcs.Inc™text

$INCLUDE ('w0'Incs'MessageTypes.Inc*te

EXAMPLE

)
)

~)
~)

#t™)

$INCLUDE ('w0'Incs'MessageProcs. Inc™text™)

$INCLUDE ('wO Incs'StringTypes.Inc™tex
$INCLUDE ('w0'Incs'StringProcs.Inctex

FINCLUDE (w0’ Incs'WindowTypes.Inc™tex
$INCLUDE ("w0'Incs'WindowProcs.Inc“tex

$INCLUBE ('w0'Incs’'DsPasTypes.Inc™text

PUBLIC FormPLY;
VAR theSampleForm: DataFormType;

PROGRAN Main;

CONST
{ miscellanequs strings ?
sampleMsg = ‘Sample: °;
filllInFormMsy = ' Fill in form
mayStringlLength = 80;
VAR
windowRect: Rectangle;
cursar: CursorDescriptor;
msg: MessagePtr;
ch: CHAR;
code: WORD;
theNumber: INTEGER;
turChoice2: INTEGER;
theString: StringPtrg
curChoice3: INTEGER;

theRealNuaber: REAL;

curChoice4: INTEGER;
curfFont: INTEGER;
curPrinter: INTEGER;

)
t~)

tv)
t~)

~)

3

and confirm

Bata Driven

PROGRAM

Menu/Form Listings

"FORM®"

g7

curPlotter: INTEGER}

PROCEDURE InitDisplay;

VAR windowExtent: Foint;

BEBIN .
ConDefCsr (FALSE);
WinInitDefaultWindow;
WinGetWindowExtent (windowExtent);
FldStartKeys (cursor};

msg 1= Msglnit;
WITH windowRect DO { entire window for use with menus and foras }
BEGIN
topleft.x = 0O
topLeft.y 1= 03
extent := windowExtent;
END;
END;
{ ___
}
PROCEDURE InitVars;
BEGIN
theNuaber L H
curChoice2 1= 1y
theString := NewString (maxStringlLength);
curChoiceld 1= 2y
theReal Number := 35.0;
curChoiced 3= 1;
curfFont = 13
curPrinter 1= 23
curPlotter HE -+

WITH theSampleFora DO

BEGIN
rows[1}.theData.number := theNumber;
rowsi1l.currentChoice := 1}
rows{2).currentChoice curChoice2;
rows[31.theData.string := ExactCopyOfString (theString);
rows{3l.currentChoice curChoice3;
rows(4].theData.realNumber := theRealNuaber;
rows[4]).currentChoice curChoiced;
rows[S]l.currentChoice curFont;
rowslél.currentChoice curPrinter;
rows[7).currentChoice curPlotter;

ap We CI 8 ae &
[I | SO T [- N N O i S |

END;
END;

B-B Common Code Reference

PROCEDURE SampleFormg
VAR itemSelected: INTEGER;
confirmed: BOOLEAN;

rect: ‘Rectangle;
str: StringPtr;
BEGIN

str := Concatlits {(SamplelMsg, FillInFormMsg);
rect := windowRect;

confirmed := DataFormConfirmed-
(theSampleFornm,
normalDataFora,
msg,
str,
rect,
tursor. keyProcess,
ch)

IF confirmed THEN
WITH theSamplefora DO
BEGIN

FontSetNth {theSampleForm.rows[Sl.currentchoice, codel;

END;

UndoDataForm (theSampleform, TRUE};

BEGIN
InitDisplay;
InitVars;
SampleForm;

END

Data Driven Menu/Fora Listings

B-9

LINK COMMAND FOR EXAMPLE PROGRAM "FORM®"

tLink Fora:

link 'w'obis'Form.PLM™Bbj~, "w'objs'Form,Pas™0bij"%,
‘w'Libs'CompactSystemCalls™Lib™ TO Fora™Run™ NOPRINT Purge BIND Fastlecad
SS(STACK (+1000))

B-10 Common Code Reference

C

O

APPENDIX C. MENUS & FORME: ANDTHER METHOD

The data driven menus and forms techniques described in Chapter B greatly
simplify implementation of these handy data gathering mechanisms. Previously,
a much more complicated technique was used to implement the menus and forms.
We will describe this earlier, more complicated technique for two reasons:

o

Some applications were developed before the availability of the data driven
technigue and associated calls. Users who are already using the earlier
technique may find it impractical to convert existing programs to the new
technigue and may wish you use existing code to implement additional menus
and forms.

There are some things that you can do with the older technigque that are not
supported by the data driven technique. For example, you cannot greate
"dynamic" menus and foras with the data driven technigue. A dynamic senu
or form is one where you can vary the appearance and contents of the form
each time it is presented depending on what activities have taken place
since it was last displayed. An exaample of a dynamic form is the File
form. Refer to the description of the File form and the FileForaConfirmed
function in £hapter B for an illustration of a dynamic form.

The calls described in this appendix create the data structures needed for
menus and forms, and enable the user to add or modify their contents.

DATA STRUCTURES

Figure E-1, "Menu/Form Pointer Structure,” illustrates how these data
structures are related to one another and to the data structures in the
chapter on cell tables.

Menus & Forms: Another Method C~-1

ManuFormDescriptor-

MenuFormPtr CellTable >
4 " n
table" - P (See Figure 11-1
Pointer)

Figure C-1. Menu/Form Pointer Structure

TYPE MenuFormDescriptor =
RECORD
table, choiceTable: CellTablePointer;
obscuredRect,choiceRect: Rectangle;
choicelines: Integer;
END;

This record specifies the cell table as either a menu or a fore, and stores
the appropriate parameters for them. Never alter any of the contents of the
MenuForm Descriptor, except to read the CellTable pointer to reference the
cell table settings directly.

TYPE CellTablePtr = “CellTable

This pointer lets you keep track of different cell tables. (::

TYPE MenuForaPtr = “HenuFormsDescriptor)

This pointer enables you to keep track of different menus or forms at once.

£-2 Common Code Reference

TYPE ChoicaRequaest = {choiceCountRequest,
choiceCurrentRequest,

ffﬁﬁ choiceSetCurrent,
L . .
s choiceleavinglitenm,
choiceEnteringlten);
The menu package uses a variable of this type to specify the choice fields of
a form. A variable of this type can represent the different requests as
follows:
Kind of request Meaning
choiceCountRequest Requests the total nuaber
of choices that the
form should provide.
choiceCurrentRequest Requests the string for the
specified choice that is associated
with a specified iten.
choiceSetCurrent Indicates the choice
currently designated by the
highlighted box.
choicelLeavinglten Indicates that the user
has moved the outline to
a different item.
choiceEnteringltem Indicates that the outline
is about to move to a
different item.
TYPE UpdateKind = (dontUpdate, updateTop,
updateBottom, updateForward,
updateBackward);
This data type accoampaniew the ScrollKey function used in MenuFormConfirmed.
Po not use this data type or erase it from the include files.
)
S

Menus & Forms: Another Method C-3

MENU AND FORM ROUTINES

initialize, menus and forms, one routine handles the menu or form when it is
confirmed, and one routine disposes of a menu or form, While only four
routines are provided, several of these routines are quite complex and
incorporate a number of subfunctions. £ach of the routines is described in
complete detail later in this appendix.

Four routines are provided to handle menus and forms. Two routines set up, or (:“N

Menulnit Creates and initializes a menu having a single column of
choices. It requires the number of items in the menu, the
string setting of each item on the menu, and the location
on the window where the menu will be drawn.

Forminit Creates and initializes a fora with a non-editable coluan
of items and column of choices, which may or may not be
editable.

MenuFormConfirmed This all-purpose function returns True when the user
confirms a menu selection or new values on a form. It
returns False if the user escapes out.

MenuFormDispose Deallocates the menu or fora pointed to by the
MenuFormPtr., It disposes of everything, including all the
text.

Dumay Fupctions

These functions should be passed as dummy functional parameters to
MenuFormConfirmed whenever it controls a menu, or a form with no choice
fields. They are never called,

NilEhoiceProc A dumay functional parameter, which should be passed in (::
place of the ChoiceStr functional parameter to
MenuForaConfirsed.

NilChoicelnfo A dummy functional parameter, which should be passed in
place of the Choicelnfo functional parameter to
MenuForaConfiramed,

NilltemStr A dummy functional parameter, which should be passed in

place of the ItemStr functional parameter to
MenuForeConfirmed.

NilScrocllKey A dummy functional parameter, which should be passed in
place of the ScrollKey functional parameter to
MenuFormConfirmed.

C-4 Common Code Reference

Menulnit
g-)

- FUNCTION Mepulnit(usableRect: Rectangle;
itemCount: Integer;
FUNCTION ItemStr(index: Integer
}: StringPtr
}: MenuFormPtr;

Purpose and Operation

This procedure creates and initializes a menu having a single column of
choices. It requires the number of items in the menu, the string setting of
each item on the menu, and the location on the window where the menu will be
drawn. Vertical scrolling can occur when there are too many menu items to fit
on the screen. Menus always occupy the full width of the window, but each
menu item can take up one line only. At present, the function clips menus
wider than the window because horizontal scrolling is not available yet.

Parameters
Menulnit requires these input and output parameters:

usableRect The window-relative coordinates of the area that the menu
can occupy. The usableRect is the maximum area of the
window that the menu can take up.

itemCount The total number of separate menu entries.

FUNCTION IteaStr A function supplied by the application programmer. Its
index parameter represents the nth item on the menu, and
the ItemStr function must return the string {i.e., string
pointer) corresponding to that nth element of the menu.
For example, ItemStr(5) should return a pointer to the
string of the fifth item on the menu, The strings
returned may have different maximum widths, but strings
wider than the window will be clipped. GSince each item
can take up only a single line, the strings cannot contain
embedded carriage returns. The SubStringLit function
works well here.

WARNING: Menulnit will dispose of the string returned by

ItemStr; if necessary, make sure that ItemStr returns only
a copy of the string.

Returns

Menulnit returns a MenuFormPtr to the.menu that it creates, but it does not
draw the menu.

Menus % Forms: Another Hethod C-5

FormInit¢

FUNCTICON FormlInit C
(usableRect: Rectangle;
itemCount,
maxChPerLabel,
choicelines: Integers
FUNCTIDN
Item5tr{col ;,row: Integer;
field: FieldPtr): StringPtr
}: MenuFormPtr;

Purpose and Operation

This procedure creates and initializes a form with a non-editable column of
items and column of choices, which may or may not be editable. It needs to
know the number of items on the form, the characteristics and setting of each
item on the form, and the location on the window where the form will be drawn.
S5ee Figure B-1, "MenuForm Fointer Structure." FormInit returns a MenuForaPtr
to the fore that it creates, but does not draw the form.

Parareters

ForaInit requires these input and output parameters:

usableRect The window-relative coordinates of the area that the form
can occupy. The usableRect is the maximum area of the (:
window that the form can take up.

itemCount The total number of separate entries, where an entry in a
form comprises a item and its choice setting. There are
{itenCount x 2} fields in a fors.

maxChPerLabel The maximua number of characters in each iteam, or
equivalently, the width of the item columen in characters.
Note that the items cannot take up more than one line.

choicelines The maximum number of lines that the list of choice can
pccupy. Foralnit interprets the value of choicelines as
follows:

=0 A band of space for the choices is NOT allocated or
displayed. You should set cheicelines = 0 when no
value fields have choices, so that the empty choice
space will not be displayed.

=1 The choices will be displayed as a horizantal list
en & band of space above the form. If all of the
choices cannot be displayed on the screen at once,
horizontal scrolling becomes available
automatically,

C

£-6 Conmon Code Reference

W,
S

FUNCTION IteamStr

> 4 I1f choicelines is any positive integer greater than
i; Formlnit will display the choices vertically,
one choice on a line, up to the maximum pumber of
lines specified by choiceLines. Each choice can
take up one line only; the functien clips any
choice wider than the window.

I+ there are too many choices to fit in the
vertical area defined by cheoicelines, then the
function automatically enrables the choices to
scroll vertically.

A function supplied by the application. It should accept
the column, row, and field pointer of a field in the fornm,
and then return the string that is the itea (if it is a
item field) or the default valuve (if it is a setting
field). {No multi-line fields or strings containing
carriage returns are allowed.} ForslInit also enables the
user's ItemStr function to change the editable and choice
properties of each field. ItemStr must accept these
parameters:

col The column number of the desired field.
row The row number of the desired field.

field The pointer to the field designated by col and row.
(Since it's a pointer, the modified FldPtr is an
implicit output of IteaStr, as well.} Farmlnit
passes this pointer to the user's IteaStr function,
allowing the application to modify the editable and
choice properties of each field. ItemStr can modify
these properties by altering field*.kind.editable
and field*.kind.choice, which otherwise default to
False (non-editable, non-choice} in Foralnit.

Note that it would be meaningless to define a item
field as an editable or choice field, because the
user should never be able to move into a item
field, by definition,

The ltemStr function returns a StringPtr to the

string of the desired field. It will return the string
containing the item (if it is a item field}) or the
default value (if it is a setting field). (The string
should not contain embedded carriage return or line feed
characters.} 1f a setting field has no default setting,
IteaStr should return an empty string with the maximuam
permissible length defined for that field.

Menus & Forms: Another Method c=7

NenuFormConrTirmed

FUNCTION MenuForaConfirmed
{menuForm: MenuFormPtr)
keyProcess: Wordj
FUNCTION ItemStricol, row: Integer;

field: FieldPtr;
}: StringPtrj

FUNCTION ChoiceStricol, row: Integer;

choice: Integer;
}: StringPtr;

FUNCTION Choicelnfo(col, row, choice: Integer;

request: ChoiceRequest
}: Integer;

FUNCTION ScrollKey {ch: Char): UpdateKind;
VAR selection: Integer;

VAR ch: Char
)i Boolean;

Purpose and Oparation

This all-purpose function returns True when the user confirms a menu selection
or new values on a form. It returns False if the user escapes out.

Paramaters

MenuFormConfirmed requires these input and output parameters:

menuForas

FUNCTION ReadKey

FUNCTION KeyPressed

FUNCTION ItemStr

A pointer to the menu or form to be edited.

A function supplied by the application programmer. It
enables the prograamer to specify any function that
reads a character from the console or any other input
device. The function should return data of type Char.
For example, ConCharin would be a typical function.

A function supplied by the application programmer. The
programmer can specify any function to detect whether a
console key has been pressed {(or, for other types of
input devices, to detect whether the input buffer
contains a character), The function must return a
boolean value. ConKeyPressed is a typical function to
supply here.

The same function that was passed to Foramlnit, above.
It should accept the column, row, and field pointer of
a field in the fore, and then return the default values
of the setting fields. It acts here only to supply the
default settings of editable-choice fields.

NOTE: IF YOU ARE EDITING A MENU OR A FORM WITH NO

C-B Cosmon Code Reference

@

O

fFHH

FUNCTION ChoiceStr

EDITABLE CHOICE FIELDS, YOU MUST SUBSTITUTE A NIL
FUNCTION FOR THIS FUNCTIONAL PARAMETER. The Function
NilItemStr, given below, should be inciuded as a
parameter here instead.

ItemStr has these parameters:
col The number of the desired column.
row The number of the desired row,

field The pointer to the field designated by col and
FOW.

The ltemStr function returns a StringPtr representing
the default value to the string of the desired field.
If the setting field has no default value, IteaStr
should return an empty string with the maximun
permissible length defined for that field.

A function supplied by the application programmer that
returns a character string when it receives parameters
that specify the column and row of the form, along with
the chaice.

NOTE: THE ChoiceStr FUNCTION PARAMETER 15 NEEDED ONLY
FOR FORNS WITH CHOICE FIELDS. IF YDU ARE EDITINE A
MENU OR A FORM WITH NO CHOICE FIELDS, YOU MUST
SUBSTITUTE A NIL FUNCTION FOR THIS FUNCTION PARAMETER.
The function NilChoiceProc, given below, should be
included as a parameter here instead.

These are the parameters of CheiceStr:

col The column number of the desired field. NOTE:
the ChoiteStr function will never be called for
the item column (col = 1). As implemented now,
it calls the function only with col = 2,

row The row number of the desired field.

choice The number of the choice for the given coluen
and row for a setting field, if the field is a
choice field. The program that calls ChoiceStr
will never specify choice for a non-choice
field.

Given the above references to the fields of a form, the

ChpoiceStr function should return pointers te these
strings:

Menus & Forms: Another Method c-9

Reference to: String returned:

- an - R Y

item field The item’'s string
value

setting field--choice The string value
of the current
choice

setting field--editable The string value
of the field,
a user’'s typed

response
setting field-- The string value
choice or editable of the current

choice, which can
include a user’s
typed response

FUNCTION Choicelnfo Written by the application progammer, the function msust
return information about the choice field of any
column, row, or choice aof a form.

NOTE: THE Choicelnfo FUNCTIDN PARAMETER IS5 NEEDED ONLY
FOR FORMS WITH CHOICE FIELDS, IF YDU ARE EDITINE A
MENU OR A FORM WITH ND CHOICE FIELDS, YDU MUST
SUBSTITUTE A NIL FUNCTION FOR THIS FUNCTION PARAMETER.
The function NilChoicelnfo, given below,; should be
included as a parameter here instead.

The Choicelnfo function actepts these parameters:

col The column number of the item which the
putlipne is about to enter.

row The row number of the item which the outline
is about to enter.

thoice The number of the choice that the user made.
It can be undefined or equal to zero when
request = choicelountRequest or
thoiceCurrentRequest.

request These values of request determine what
information is returned by Choiceinfo:

request = choiceCountRequest

Choicelnfo should return the total number of
choices for the item of the form specified by
“tol" and "row".

C-10 Common Code Reference

FUNCTION ScrollKey

VAR selection

VAR ch

o

request = choiceCurrentRequest

Choicelnfo should return the number of the
current choice for a given item. (The
application is reading its choice value for
the given item and passing it to the menu or
form.)

request = choiceSetCurrent

The *choice” parameter represents the number
pf the choice designated by the highlighted
box. The thoice is associated with the itea
specified by "col® and "row". The application
should assign the value of "choice” ta its owp
variable representing the choice values. The
functional value that Choicelnfo returns is
ignored.

request = choicelLeavinglten

The user has moved the outline from one itenm
to another., The application should check the
values of “col” and "row" to see which itenm
the user has moved out of. This is useful i+t
the application needs to perform numeric
conversions or error checking before allowing
the user to confirm the form,

request = choiceEnteringlten

Receiving this request means that the outline
is about to move to a different item (even if
the next item has no choices), This lets your
application validate the setting of the
current item before moving the outline to the
next itenm.

This function is intended to implement "difficult case"
scrolling of choices in a form. However, the ScrollKey
operation is not available for use currentiy. For the
present, you must include the NilScrollKey fuaction
(described later under Dumay Functions) in all your
calls to MenuFormConfirmed.

An output, it indicates which item the user selected
from the menu. With a form, it returns the iteas (not
the choice) that the user had moved to before
confirming the form.

The character that removed the user froe the menu or
form. These characters include other CODE~ commands,
CONFIRM, ESC, and cancel {CODE-ESC). The application
can thus respond differently when the user quits,
aborts, escapes, etc.

Menus & Forms: Another Method C-11

Returns

MenuFormConfirmed returns a Boplean: it indicates that the user confirmed the @
menu or form and its values (= True) or that the user aborted or escaped the
menu or form without changing any of the data values.

C-12 Common Code Reference

NIilChoiliceProc

FUNCTIDN MNilChoiceProc{col,row: Integer;
thoice: Integer): StringPtr;

Purpose and Operation

A dumay functional parameter, which should be passed in place of the ChoiceStr
functional parameter to MenuFormConfirmed. It returns a StringPtr to nil.

NIIChoicelnTo

FUNCTION NilChoiceinfol(cel,row,cheicet Integer;
request:ChoiceRequest}: Integer;

Purpose and Operation

A dummy functional parameter, which should be passed in place of the
Choicelnfo functional parameter to MenuFormConfirmed. This function always

returns a value of zero.

NIlItemStr

FUNCTION NilltemStricol,row,choice: Integer;
field: FieldPtr): StringPtr;

Purpose and Operation

A dummy functional parameter, which should be passed in place of the IteaStr
functional parameter to MenuForaConfirmed. It returns a StringPtr to nil.

Menus & Forms: Another Method C-13

 —

e

NilScrollKey

FUNCTION NilScrollKey(ch: Char): UpdateKind; C

Purpose and Operation

A dummy functional parameter, which should be passed in place of the ScrollKey
functicnal parameter to MenuFormConfirmed. This function always returns
dontlpdate.

MenuFormDispose

FUNCTION MenuFormDispose(menuForm: MenuFormPtr):
MenuFormPtrj

Purpose and Operation

This function deallocates the menu or form pointed to by the MenuFormPtr. It
disposes of everything, including all the text. There is no dontDisposeText
option for the text strings because each instance of a menu or form is unique.
MenuFormDispose always returns nil so that the MenuForamPtr to the disposed
menu or form can be assigned the value of nil,

£~14 Common Code Reference

