
14 June 2002 Embedded Edge

Creating a Dual-
Processor Architecture
for Digital Audio

you need to be sure that this type of
architecture makes sense. Certainly,
if you already have one or both of
the desired applications running on
their own, combining the function-
ality by integrating the two proces-
sors is a logical solution. This type of
architecture also provides for a logi-
cal division of functionality, includ-
ing letting the DSP focus on the key
algorithms. The DSP of course is
fully capable of supporting a stand-
alone application, but if you already
have an existing host application,
using the DSP as a digital audio
“engine,” or coprocessor, will enable

you to add this functionality with
minimal impact to the existing
design while taking advantage of the
proven algorithms on the DSP. This
logical separation also allows for
modular development, improved
maintenance, and easier enhance-
ment capabilities.

To demonstrate this concept, let’s
examine how Indesign used the
DSP-based MP3 encoder application
from the Internet Audio group to
add MP3 encoding to a host applica-
tion.

Figure 1 shows block diagrams of
the existing applications. The audio

application, running on the
TMS320C5416 DSP, is designed to
be a self-contained program, includ-
ing user interface (display and key-
pad), data input (codec), data out-
put, and media storage (Compact
Flash), along with the core encoding
engine. PCM data is received in real
time from the I2S codec interface,
processed through the encoder, and
stored in the Compact Flash. The
host application contains a user
interface, a hard disk drive, and a
CD-ROM drive.

The new dual-processor architec-
ture is shown in Figure 2. It retains
the user interface (UI), the media
interfaces, and the existing features
from the host application. We added
a UI for the encoding feature, an
encoding API, and a DSP driver to
the host application. The DSP
retains the core MP3 encoding
engine and changes the input and
output data sources. The host appli-
cation now sends the input (PCM)
data to the encoder, and the encoder
sends the output (MP3) data to the
host, all via the Host Port Interface

A dual-processor architecture is a great way to add digital
audio to an existing host application, but care must be taken.

By Paul Cohrs, William Powell and Eric Williams

Y
ou have a great host application running on a
high-end processor that’s just dying to include dig-
ital audio. Texas Instruments’ Internet Audio team
has some nice stand-alone DSP audio applications
available. It seems as if it should be fairly simple
to bring the two applications together. Actually, it

is—if you conduct a thorough analysis up front, take into account
certain design constraints before you begin, and pay attention to
details during the integration.

Anytime you consider implementing a dual-processor design,

Dual-Processor Architecture

Dual-Processor Architecture

(HPI) bus, an integrated mechanism
of TI DSPs to communicate with an
external host. Finally, we removed
the DSP’s UI and media storage.

When developing a dual-proces-
sor design, especially when merging
existing stand-alone applications,
it’s important to understand fully
how the two processors will commu-
nicate. Some important aspects we
considered were communication
bandwidth, minimum and maxi-
mum latencies within each proces-
sor, initialization, and firmware pro-
gram flow control. In particular, to
support the new data and program
flow requirements, we considered
both the data bandwidth to the host
and the impacts of latency in the
system.

As an example of the real-time
processing required, with an audio
signal sampled at 44.1 kHz and 16-
bit stereo, the data input for 2x pro-
cessing is 2,822,400 bits per second.
With MP3 encoding at 128 kbps, the

output will average 256,000 bps.
Those rates aren’t high for an 8- or
16-bit parallel bus, but the system
response time can complicate the
design.

A significant part of the data trans-
fer time can be attributed to latency
in the host application. A typical
host application uses an RTOS and
will have some periods during which
tasks with a higher priority delay the
host’s servicing the DSP’s data

requests. The duration of those tasks
determines the host latency when
responding to the DSP. Both the
maximum and average latency dura-
tions must be considered. In our
host application, the higher-priority

task latency swamped the actual
data transfer time.

To give a sense of how latency
affects the data transfer rate,
assume that the average host laten-
cy for a DSP request is 2 ms and that
the DSP requests 1,024 16-bit words
(16,384 bits) each time it needs
data. To support a transfer rate of
2,822,400 bps, the DSP must make
approximately 172 requests for data
each second. Transferring the data
on a 25-MHz 16-bit bus would take
7.056 ms, and the latency would be
172 x 2 ms = 344 ms.

If you’re developing a similar
dual-processor application, once
you’ve designed the interface, you
should measure the latencies to
determine the overall system perfor-
mance. If an improvement is
required, you can employ one or
more strategies to reduce the laten-
cy: raise the communication task
priority, change the buffer transfer
sizes, or reduce the high-priority
task latencies.

Although adding MP3 encoding to
the host application actually
removes the real-time encoding con-
straint, it’s desirable to optimize the
interface to allow data to be trans-
ferred as fast as the encoder can pro-
duce output. Our goal was to supply
data rates greater than twice real
time. To do that, the interface must
be able to support the transfer of
audio data, a command/response

structure for control of the encoding,
and the downloading of DSP images.

The choices for interfacing to the
DSP include using a serial link or
the HPI bus. We chose to configure
the HPI bus for nonmultiplexed

Embedded Edge June 2002 15

Figure 1. It's fairly simple to take stand-alone applications, such as Internet

audio (a) and a host (b) and merge them into a common application providing

additional functionality without having to start all over.

When developing a dual-processor
design, it’s vital to understand how
the two processors will communicate.

Dual-Processor Architecture

16 June 2002 Embedded Edge

address and data. When using the
bus, the host processor can read
from and write directly to the DSP’s
dual-port static memory, requiring
no action by the DSP. We mapped
the DSP dual-port memory into the
host address space and connected
the host’s address and data bus
directly to the DSP’s HPI bus. We
didn’t consider interfacing to the
serial link because the host proces-
sor lacked a suitable interface.

The control of the interface can be
done through polling by the host or

through interrupts. To provide a
quick response to the DSP’s data
needs, we chose interrupts. This
approach required the use of an out-
put bit on the DSP to set an interrupt
on the host. We also used an external
hardware interrupt input on the DSP
connected to a dedicated output bit
of the host to provide an interrupt to

the DSP. These interrupts were used
to indicate that a new message or
command was available.

The stand-alone DSP application
loaded the DSP application image
from Compact Flash. To reduce the
system cost, it was desirable to store
the DSP image on the host’s hard
drive and download it to the DSP
when initializing the latter. The
DSP’s built-in boot ROM has an
option for loading code, via the HPI,
after a reset, which is just what we
needed. With the interrupt control

of the interface, we were able to
download a complete DSP image in
300 to 500 ms.

Once the interface architecture
was settled, we needed a command
set that would allow control of the
encoding as well as bidirectional
data transfer. The command set had
to provide not only basic start and

stop encoding commands, but also a
level of handshaking to support the
transfer of PCM data from the host
and encoded data from the DSP. In
addition, it had to provide a means
to specify configuration parameters
for the encoding algorithms. Lastly,
the command set had to be capable
of suppling images to the DSP. We
decided on the command set listed
in the table.

We made changes to the host
application software at three levels:
application, interface, and driver. At
the application level, we had to
develop a user interface for the new
encoding feature that allows the sys-
tem to use that resource. The new
UI uses the existing user input and
display mechanisms of the system
and, because it’s obviously desir-
able, matches the existing user
interface style.

To support the application pro-
gramming, we developed an API to
the encoding engine to insulate the
application from the details of inter-
facing to the DSP. The encoder API
supports high-level actions required
for encoding, including configura-
tion (selection of sample rate, com-

Figure 2. The dual-processor architecture takes advantage of the existing TI Host Port Interface (HPI) for connectivity.

Adding some driver software on both sides to handle the HPI data transfers provides quick integration of the applications.

To reduce costs, it was desirable to
store the DSP image on the host’s hard
drive and download it to the DSP.

Dual-Processor Architecture

Embedded Edge June 2002 17

pression rate, and other encoding
parameters), start encoding, pause
encoding, and stop encoding. The
API performs a task similar to that
done by TI’s TMS320 DSP Algorithm
Standard, providing a standardized
set of rules and guidelines for con-
sistent coding.

To support the encoder API (and
possibly other APIs, if additional
features are added that use the
DSP), we also developed a DSP dri-
ver. The driver handles low-level
interfacing to the DSP. It includes
functions to load and initialize the
DSP code image, handle the low-
level command interface with the
DSP, read from and write to the
DSP’s dual-port memory, and trigger
the host-to-DSP interrupt. It also
includes the DSP-to-host interrupt
service routine.

Changes to the host system soft-
ware include mapping the DSP dual-
port memory into the host memory
map, assigning a Chip Select to the
DSP, connecting the host’s address
and data bus to the DSP’s HPI bus,
allocating an external interrupt for
the DSP-to-host interrupt signal and
designating an output bit for the
host-to-DSP interrupt.

We implemented the DSP driver
as a class. The driver handles the
command and response control
interface to the DSP and also pro-
vides a mechanism for loading the
initial DSP image. Although in our
design only the encoder image is
loaded, this mechanism can be used
to load other images providing dif-
ferent functions as well.

One aspect of the DSP driver that
required special attention is that the
dual-port memory appears as a non-
contiguous block of memory to the
host while appearing as one contigu-
ous block of memory within the
DSP. In addition, the host’s memory
address space is byte-based, where-
as the DSP’s memory is word-based.
Since the downloaded image fills

most of the DSP memory, the driver
provides address translation and
byte-to-word translation to map the
downloaded instructions to the
proper area within the DSP. The
interrupt service routine for han-
dling DSP-to-host interrupts is also
contained within this driver. The

interrupt routine sets a semaphore
that the encoding monitoring task
can use.

We also implemented the encoder
API as a class. The API provides the
interface for the application to con-
trol the encoding operation and also
contains the communication-moni-
toring task for encoding. The initial-
ization of the API allows the applica-
tion to set the input and output file
streams, configure the encoding
parameters, and create a task to

monitor the DSP communications.
The monitoring task waits for the
DSP interrupt semaphore, an appli-
cation command, or a time-out. It
also manages the responses to DSP’s
requests to get new PCM data or to
store encoded MP3 data and to
application requests to control the

encoding process. When the DSP-to-
host interrupt semaphore is set, the
monitoring task reads the DSP com-
mand using DSP driver functions,
acknowledges receipt of the com-
mand to the DSP, and then takes the
appropriate action. When an appli-
cation command is received, the
monitoring task translates it into
DSP driver function calls for execu-
tion. To minimize the latency for
interactions with the DSP and to
maximize the data throughput, we

Figure 3. The encoding path takes PCM data directly from the host processor, via

the HPI, through new input pipes, and on to the existing encoding engine.

To support the encoder API, we also
developed a DSP driver, which handles
low-level interfacing to the DSP.

18 June 2002 Embedded Edge

set the priority of the encoder mon-
itoring task high.

The encoder API and the DSP dri-
ver work together with the applica-
tion code to control and monitor the
DSP encoding resource.

We used DSP/BIOS data pipes and
software interrupts to manage the
program flow control. The encoder
initialization code provides data
from the first buffer of to the
encoder module. After this data is
used, the data pipe function initiates
a software interrupt to get addition-
al data. The output of the encoder
then fills the output data pipes, and
the output pipe function initiates a
software interrupt to transfer the
data to the host. The speed of the
encoder function controls the flow

of the PCM data from the host and
the encoded data back to the host.

A major area of change we made

to the DSP firmware was switching
the data input and output from the
codec and Compact Flash to the

Dual-Processor Architecture

Figure 4. The encoded data is taken from the encoding engine, through the new

HPI code, to the host processor, via the HPI.

TM IDE

Dual-Processor Architecture

Embedded Edge June 2002 19

HPI. As shown in Figure 2, we divid-
ed the HPI firmware on the DSP into
three major areas: a command
interface, a buffer area for PCM data
from the host, and a buffer area for
the encoded data back to the host.
To notify the DSP of a new com-
mand being received, we added an
external interrupt from the host to
the DSP . We also used an output bit
on the DSP to create an interrupt to
the host.

The buffer area for receiving PCM
data from the host replaced the I2S
interface from the codec. Since the
audio input is being feed from the
host controller, we changed the flow
of the program execution to allow the
DSP to process data as quickly as
possible.

We used the DSP/BIOS buffered
pipe manager to control the buffer
area and a pipe with two frames of
1,024 words each to buffer the data
from the host. As an example, for 16-
bit stereo and 44.1-kHz sample rate
for the input, this system provides up
to 23.2 ms of storage.

The host processor loads the
buffer after receiving a Data Request
command from the DSP. The Data
Request command includes the
start address and the minimum and
maximum number of samples that
the host should write. As shown in
Figure 3, a new HPI PCM task takes
the data received from the host
processor and loads up the existing
encoder input pipes.

We changed the interface from
the encoder to the Compact Flash to
direct the data to the host instead of
to the Compact Flash driver. We
modified the buffer sizes to account
for the delay in the host response to
the data being available and set the
buffer area to 2,400 words. The DSP
loads the buffers once the encoded
data is available, and the host
processor is notified via a Data
Ready command, indicating the
start address and the size of the data

to be read. After it has read the data,
the host responds with a Data Free
command.

The command interface, shown
in Figure 4, consists of a 16-word
input buffer and a 16-word output
buffer that can receive the com-
mand from the host and load a com-
mand to send to the host. The han-
dler for the interrupt from the host
retrieves the received command and
processes it accordingly.

With the user keypad and display
interface controlled by the host con-
troller, we disabled the DSP keypad
and display interface functions.
Removing the user interface and
media interfaces from the DSP elim-
inated any real-time constraints on
the encoding process. Therefore the
encoding process can run faster
than real time for those applications
that may require more processing
than would be available with a real-
time input.

We evaluated the new dual-
processor system using a 75-second
segment of jazz music contained in
a wave file recorded at 44.1 kHz, 16-
bit signed stereo. The tests with the
complete system resulted in an
encoding rate of 1.1 to 2 times real
time, depending on the sample rate
and bit rate.

Several factors should be taken
into account when assessing the
potential limits on the performance

of this system. They include the pro-
cessing time of the core algorithms,
the overhead time to buffer and
transfer data, and the response time
of the host controller. To optimize
data processing, the DSP must pro-
vide sufficient buffering for the input
data to continually feed the audio
algorithm, and must have sufficient
output data buffering to always have
room to place the processed data. If
these criteria are met, the DSP can
process data at the maximum rate
allowed by the algorithm. ◆

Paul Cohrs, William Powell, and Eric
Williams are senior software engineers at
Indesign, LLC in Indianapolis, Ind.
Formerly a member of the technical staff
at Bell Laboratories, Cohrs (pwcohrs@
ndesign-llc.com) has spent more than 10
years in DSP firmware development, with
experience in DSP applications for
Internet audio, speech compression, and
speech recognition. Powell (wvpowell@
indesign-llc.com) has 20 years’ experi-
ence developing embedded micro-
processor and DSP products. His current
work involves embedded voice-over-IP
terminals and research on Internet-
enabled embedded products. Williams
(ewilliams@indesign-llc.com) has 15
years’ experience developing and imple-
menting DSP algorithms. He has devel-
oped DSP applications that have incor-
porated Bluetooth, VoIP, and Internet
audio.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

